Conserved hairpin in the nuclear ITS1 of pleurocarpous mosses and its phylogenetic significance
Irina A. Milyutina, Michael S. Ignatov

Literature Cited
Coleman, A. W. , R. M. Preparata, B. Mehrotra & J. C. Mai. 1998. Derivation of the secondary structure of the ITS-1 transcript in volvocales and its taxonomic correlations. Protist 149: 135–146. Google Scholar
Coleman, A. W. & V. D. Vacquier. 2002. Exploring the phylogenetic utility of ITS sequences for animals:a test case for –abalone (Haliotis). J. Mol. Evol. 54: 246–257. Google Scholar, Crossref
Cox, C.J., B. Goffinet, N.J. Wickett, S.B. Boles & A.J. Shaw. 2010. Moss diversity: a molecular phylogenetic analysis of genera. Phytotaxa 9: 175 195.Google Scholar, Crossref
Fedosov, V.E. 2012. Encalypta sect. Rhabdotheca in Russia. Arctoa 21: 101–112.Google Scholar, Crossref
Gardiner, A. , M. Ignatov, S. Huttunen & A. Troitsky. 2005. On resurrection of the families Pseudoleskeaceae Schimp. and Pylaisiaceae Schimp. (Musci, Hypnales). Taxon 54: 651–663. Google Scholar
Goffinet,B., W.R. Buck & A.J. Shaw. 2009. Morphology, anatomy, and classification of the Bryophyta. In: Goffinet, B. & A. J. Shaw (eds.) Bryophyte Biology, 2d ed. Cambridge University Press: Cambridge: 55–138.Google Scholar
Gottschling, M. , H. H. Hilger, M. Wolf & N. Diane. 2001. Secondary structure of the ITS1 transcript and its application in a reconstruction of the phylogeny of Boraginales. Plant. Biol. 3: 629–636. Google Scholar
Gottschling, M. & J. Plötner. 2004. Secondary structure models of the nuclear internal transcribed spacer regions and 5. 8S rRNA in Calciodinelloideae (Peridiniaceae) and other dinoflagellates. Nucl. Acids Res. 32: 307–315. Google Scholar, Crossref
Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nuclar Acids Symposium Series 41: 95–98. Google Scholar
Hancock, J. M. & G. A. Dover. 1990. Compensatory slippage’’ in the evolution of ribosomal RNA genes. Nucl. Acids Res. 18: 5949–5954. Google Scholar, Crossref
Hancock, J. M. & A. P. Vogler. 2000. How slippage-derived sequences are incorporated into rRNA variable-region secondary structure: implications for phylogeny reconstruction. Mol. Phylogenet. Evol. 14: 366–374. Google Scholar, Crossref
Hernández-Maqueda, R. , D. Quandt & J. MUÑOZ. 2008. Testing reticulation and adaptative convergence in the Grimmiaceae (Bryophyta). Taxon 57: 500–510. Google Scholar
Huttunen, S. M. & M. S. Ignatov. 2010. Evolution and taxonomy of aquatic species in the genus Rhynchostegium (Brachytheciaceae, Bryophyta). Taxon 59(3): 791–808.Google Scholar, www
Huttunen, S., N. Bell, V.K Bobrova, V. Buchbender, W.R. Buck, C.J Cox, B. Goffinet, L. Hedenas, B.-C. Ho, M.S Ignatov, M. Krug, O. Kuznetsova, I.A Milyutina, A. Newton, S. Olsson, L. Pokorny, J.A. Shaw, M. Stech, A. Troit­sky, A. Vanderpoorten & D. Quandt. 2012. Disentangling knots of rapid evolution: origin and diversification of the moss order Hypnales. Journal of Bryology 34: 187 211.Google Scholar, Crossref
Ignatov, M.S. & S. Huttunen. 2002. Brachytheciaceae (Bryophyta) – a family of sibling genera. Arctoa 11: 245–296.Google Scholar, Crossref
Ignatov, M.S., A.A. Gardiner, V.K. Bobrova, I.A. Milyutina, S. Huttunen & A.V. Troitsky. 2007. On the relationships of mosses of the order Hypnales, with special reference to taxa traditionally classified in the Leskeaceae. In: Newton, A.E. & R.S. Tangney (eds.). Pleurocarpous mosses: systematics and evolution. Systematic Association, Special Volume 71: 177–213.Google Scholar, www
Ignatov, M. S. & D. E. Shcherbakov. 2007. Did pleurocarpous mosses originate before the Cretaceous? In: Newton, A. E. & R. S. Tangney (eds. ), Pleurocarpous mosses: systematics and evolution. Syst. Assoc. Spec. Vol. 71: 321–336. Google Scholar, www
Fedosov, V.E. & E.A. Ignatova. 2008. The genus Bryoerythrophyllum (Pottiaceae, Bryophyta) in Russia. Arctoa 17: 19-38.Google Scholar, Crossref
IGNATOVA, E.A., O.I. KUZNETSOVA, M.S. IGNATOV & H. KЦCKINGER. 2012. The genera Oxystegus and Pseudosymblepharis (Pottiaceae, Bryophyta) in the Caucasus. Arctoa 21: 173-180.Google Scholar, Crossref
Joseph, N. , E. Krauskopf, M. I. Vera & B. Michot. 1999. Ribosomal internal transcribed spacer 2 (ITS2) exhibits a common core of secondary structure in vertebrates and yeast. Nucl. Acids Res. 27(N23): 4533–4540. Google Scholar, Crossref
Koetschan, C. , F. Förster, A. Keller, T. Schleicher, B. Ruderisch, R. Schwarz, T. Müller, M. Wolf & J. Schultz. 2010. The ITS2 Database III – sequences and structures for phylogeny. Nucl. Acids Res. 38: D275–D279. Google Scholar, Crossref
Koponen, T. , E. A. Ignatova, O. I. Kuznetsova & M. S. Ignatov. 2012. The genus Philonotis (Bartramiaceae, Musci) in Russia. Arctoa 21: 21–62. Google Scholar, Crossref
Levinson, G. & G. A. Gutman. 1987. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol. 4(3):203–221. Google Scholar
Liu, Jin-Shiou and C. L. Schardl. 1994. A conserved sequence in internal transcribed spacer 1 of plant nuclear rRNA genes. Plant Molecular Biology 26:775-778. Google Scholar, Crossref
Magill, R. E. 2010. Moss diversity: new look at old numbers. Phytotaxa 9: 167–174. Google Scholar, Crossref
Mai, J. C. & A. W. Coleman. 1997. The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants. J. Mol. Evol. 44:258–271. Google Scholar
[Milyutina, I. A. , D. V. Goryunov, M. S. Ignatov, E. A. Ignatova & A. V. Troitsky] Милютина, И. А. , Д. В. Горюнов, М. С. Игнатов, Е. А. Игнатова, А. В. Троицкий. 2010. Филогения мхов рода Schistidium (Bryophyta, Grimmiaceae) по нуклеотидным последовательностям и вторичной структуре внутренних транскрибируемых спейсеров ядерной рДНК. Молекулярная биология 44(6):994-1009. Google Scholar, www
Mullineux, T. & G. Hausner. 2009. Evolution of rDNA ITS1 and ITS2 sequences and RNA secondary structures within members of the fungal genera Grosmannia and Leptographium. Fungal Genet. and Biol. 46(11): 855–867. Google Scholar, Crossref
Newton, A.E., N. Wikstrom, N. Bell, L.L. Forrest & M.S. Ignatov. 2007. Dating the diversification of the pleurocarpous mosses. - In: Newton, A.E. & R. Tangney (eds.) Pleurocarpous mosses: systematics and evolution. CRC Press, Boca Raton (Florida)-London-New York: 337-366.Google Scholar, www
Pedersen, N. & A. E. Newton. 2007. Phylogenetic and morphological studies within the Ptychomniales, with emphasis on the evolution of dwarf males. In: Newton, A. E. & R. S. Tangney (eds. ). Pleurocarpous mosses: systematics and evolution. Syst. Assoc. Spec. Vol. 71: 367–392. Google Scholar
Schultz, J. , S. Maisel, D. Gerlach, T. Müller & M. Wolf. 2005. A common core of secondary structure of the internal transcribed spacer2 (ITS2) throughout the Eukaryota. RNA 11: 361–364. Google Scholar, Crossref
Shaw, J. , C. J. Cox & S. B. Boles. 2003. Polarity of peatmoss (Sphagnum) evolution: Who says mosses have no roots? – Am. J. Bot 90: 1777–1787. Google Scholar, Crossref
Tsubota, H. , E. De Luna, D. Gonzбlez, M. S. Ignatov & H. Deguchi. 2004. Molecular phylogenetic and ordinal relationships based on analyses of a lage-scale datd set of 600 rbcL sequences of mosses. Hikobia 14: 149–170. Google Scholar
Wang, S. , Z. Bao, N. Li, L. Zhang & J. Hu. 2006. Analysis of the secondary structure of ITS1 in Pectinidae: implications for phylogenetic reconstruction and structural evolution. Marine Biotechnol. 9: 231–242. Google Scholar, Crossref
Zuker, M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31(13): 3406–3415. Google Scholar, Crossref