Geotropic curvatures of Sphagnum: environmental features of their genesis and trial application for estimation shoot length increment
Viktor L. Mironov, Svetlana I. Grabovik, Lubov V. Kantserova

Literature Cited
Aldous, A.R. 2002. Nitrogen translocation in Sphagnum mosses: effects of atmospheric nitrogen deposition. New Phytologist 156(2), 241-253.Google Scholar, Crossref
Banbury,G.Y. 1962. . Geotropism of lower plants. In: Handbuch der Pflanzenphysiologie. Ed. by W.Ruhland et al. Band XVII, Teil 2. Berlin-Gottingen-Heidelberg: Springer-Verlag: 344–377.Google Scholar
[Begak, D.O.] Бегак Д.О. 1927. О приросте торфяников. [On the peatlands growth] Торфяное дело [Torfyanoe delo] 11-12: 300–306.Google Scholar
Berg, A., Е. Danielsson & B.H. Svensson. 2013. Transfer of fixed-N from N2-fixing cyanobacteria associated with the moss Sphagnum riparium results in enhanced growth of the moss. Plant and Soil 362 (1): 271-278.Google Scholar, Crossref
Bismarck, R. Von. 1959. Über den Geotropismus der Sphagnen. Flora (Jena) 148: 23–83.Google Scholar
[Bondarik,N.L.] Бондарик Н.Л. 2004. . Динамика стокообразующих факторов. [Dynamics of discharge forming factors] В кн: Климат Карелии: изменчивость и влияние на водные объекты и водосборы (отв. ред. Филатов, Н.Н.) Петрозаводск, КарНЦ РАН. [in Filatov, N.N. Climate of Karelia: variability and influence on water objects and watersheds, Petrozavodsk, KarRC RAS]: 34–54.Google Scholar
Camill, P., J.A. Lynch, J.S. Clark, J.B. Adams & B. Jordan. 2001. Changes in biomass, aboveground net primary production, and peat accumulation following permafrost thaw in the boreal peatlands of Manitoba, Canada. Ecosystems 4(5): 461–478.Google Scholar
Clymo, R.S. 1970. The growth of Sphagnum: methods of measurement. Journal of Ecology. 58: 13–49.Google Scholar, www
[Elina, G.A., O.L. Kuznetsov & A.I. Maksimov] Елина Г.А., О.Л. Кузнецов, А.И. Максимов. 1984. Структурно-функциональная организация и динамика болотных экосистем Карелии. [Structure-functional organization and dynamics of mire ecosystems in Karelia] Л., Наука [Leningrad, Nauka]: 128 pp.Google Scholar
Eurola, S. 1975. Snow and ground frost conditions of some Finnish mire types. Annales Botanici Fennici 12: 1–16.Google Scholar, www
[Grabovik, S.I.] Грабовик С.И. 1994. Влияние климатических условий на линейный прирост сфагновых мхов южной Карелии. [The effect of climatic conditions on the annual increment of Sphagna in Southern Karelia] Бот. Журн. [Bot. Zhurn.] 79 (4): 81–86.Google Scholar, www
[Grabovik, S.I. & O.L. Kuznetsov] Грабовик С.И., Кузнецов О.Л. 2016. Рост и продуктивность ценопопуляций сфагновых мхов на естественных и трансформированных болотах Карелии. [Growth and productivity of cenopopulationsof Sphagnum mosses in natural and transformed mires of Karelia] Труды Карельского научного центра РАН. Серия Экологические исследования [Transactions of the Karelian Research Centre of the Russian Academy of Sciences. Ecological studies series] 4: 59–69.Google Scholar
Grabovik, S.I. & L.E. Nazarova. 2013. Linear increment of Sphagnum mosses on Karelian mires (Russia). Arctoa 22: 23–26.Google Scholar, Crossref
Graham, J.A. & D.H. Vitt. 2016. The limiting roles of nitrogen and moisture on Sphagnum angustifolium growth over a depth to water table gradient. Plant and Soil 404(1): 427–439.Google Scholar, Crossref
Ho, A. & P.L. Bodelier. 2015. Diazotrophic methanotrophs in peatlands: the missing link? Plant and Soil 389(2): 419–423.Google Scholar, Crossref
Hulme, P.D. & A.W. Blyth. 1982. The annual growth period of some Sphagnum species on the Silver Flowe National Nature Reserve, south-west Scotland. Journal of Bryology 12(2): 287–291.Google Scholar, Crossref
[Ivanter, E.V. & A.V. Korosov] Ивантер Э.В., А.В. Коросов. 2003. Введение в количественную биологию. [Introduction in quantitative biology] Петрозаводск. Петрозаводский государственный университет [Petrozavodsk, Petrozavodskij gosudarstvennii universitet]: 302 pp.Google Scholar
[Ilomets, M.A.] Илометс М.А. 1976. Продуктивность сфагнового покрова на примере Гусиного болота. [Productivity of Sphagna cover on Gusinoe mire model] Труды Печеро-Илычского государственного заповедника [Trudy Pechero-Ilychskogo gosudarstveogo zapovednika] 13: 40–57.Google Scholar
Jauhiainen, J., J. Silvola, K. Tolonen & H. Vasander. 1997. Response of Sphagnum fuscum to water levels and CO2 concentration. Journal of Bryology, 19(3): 391–400.Google Scholar, Crossref
Lindholm, T. & H. Vasander. 1990. Production of eight special of Sphagnum at Suurisuo mire southern Finland. Annales Botanici Fennici 27: 145–157.Google Scholar, www
Malmer, N. 1962. Studies on mire vegetation in the Archean area of southwestern Gotaland (South Sweden) II. Distribution and seasonal variation in elementary constituents on some mire sites. Opera botanica. 7(2): 1–67.Google Scholar
[Muldiyarov,E.Ya. & E.D. Lapshina] Мульдияров Е.Я., Е.Д. Лапшина. 1983. . Датировка верхних слоев торфяной залежи, используемой для изучения космических аэрозолей. [Dating of the top layer in peat deposit, using for cosmic aerosol research] В кн: Метеоритные и метеорные исследования, Новосибирск [In: Meteoritnye i meteornye issledovaniya, Novosibirsk ]: 75-84.Google Scholar
[Panov, V.V.] Панов В.В. 2008. Функциональная неоднородность деятельного слоя сфагновых болот. [Functional heterogeneity of acrotelm in mires] Вестник Томского государственного педагогического университета [Vestnik Tomskogo gosudarstvennogo pedagogicheskogo universiteta] 4: 21–26.Google Scholar
Pouliot, R., M. Marchand-Roy, L. Rochefort & G. Gauthier. 2010. Estimating moss growth in arctic conditions: a comparison of three methods. Bryologist 113 (2): 322–332.Google Scholar, Crossref
Raghoebarsing, A.A., A.J. Smolders, M.C. Schmid, W.I.C. Rijpstra, M. Wolters-Arts, J. Derksen, M.S.M. Jetten, S. Schouten, J.S.S. Damsté, L.P.M. Lamers, J.G.M. Roelofs, H.J.M. Op den Camp & M. Strous. 2005. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436(7054): 1153–1156.Google Scholar, Crossref
Rochefort, L., D.H. Vitt & S.E. Bayley. 1990. Growth, production, and decomposition dynamics of Sphagnum under natural and experimentally acidified conditions. Ecology 71(5):. 1986–2000.Google Scholar
Rydin, H. & R. S. Clymo. 1989. Transport of carbon and phosphorus compounds about Sphagnum. Proceedings of the Royal Society of London: Biological Sciences 237(1286): 63–84.Google Scholar
[Smolyanickij, L.Ya.] Смоляницкий Л.Я. 1977. Некоторые закономерности формирования дернины сфагновых мхов. [Some regularities of formation of Sphagnum moss turfs] Ботанический журнал [Botanicheskiy Zhurnal] 62 (9): 1262–1272.Google Scholar, www
[Solonevich, N.G.] Солоневич Н.Г. 1966. К биологии сфагновых мхов. [On the Sphagna biology] Ботанический журнал [Botanicheskiy Zhurnal] 51 (9): 1297–1302.Google Scholar, www
Sonesson, M., S. Persson, K. Basilier, & T.A. Stenström. 1980. Growth of Sphagnum riparium Еngstr. in relation to some environmental factors in the Stordalen mire. Ecological Bulletins 30: 191–207.Google Scholar, www
Turetsky, M.R., S.E. Crow, R.J. Evans, D.H. Vitt & R.K. Wieder. 2008. Trade-offs in resource allocation among moss species control decomposition in boreal peatlands. Journal of Ecology 96(6): 1297–1305.Google Scholar, Crossref
Vitt,D.H. 2007. . Estimating moss and lichen ground layer net primary production in tundra, peatlands and forests. s, New York: 82–105. In: Fahey, T.J. & A.K. Knapp (eds) Principles and Standards for Measuring Primary Production. Oxford University PresGoogle Scholar
Yazaki, T. & K. Yabe. 2012. Effects of snow-load and shading by vascular plants on the vertical growth of hummocks formed by Sphagnum papillosum in a mire of northern Japan. Plant Ecology 213: 1055–1067.Google Scholar, Crossref