ON THE TWO POORLY KNOWN ORTHOTRICHUM SPECIES FROM NORTH ASIA
О ДВУХ МАЛОИЗВЕСТНЫХ ВИДАХ РОДА ORTHOTRICHUM ИЗ СЕВЕРОЙ АЗИИ

VLADIMIR E. FEDOSOV1, ALINA V. FEDOROVA2 & ELENA A. IGNAKTOVA1

ВЛАДИМИР Э. ФЕДОСОВ1, АЛИНА В. ФЕДОРОВА2, ЕЛЕНА А. ИГНАТОВА1

Abstract

Recent revision of Asiatic specimens of the genus Orthotrichum s. str. revealed two species widely distributed and rather frequent in northern Asia, which however differ from all currently recognized species. One of them includes plants growing on silted bases of willows and fallen trees in flood valleys; its specimens were previously referred to O. holmenii, but in fact it fits O. sibiricum, a species described from the lower course of Yenisei River in 1890, but later reduced to the synonymy of O. pallens. However, O. sibiricum differs from European O. pallens in high, branched papillae and pointed, not blunt, leaf apex, and they are also clearly distinct in ITS sequences. Orthotrichum sibiricum occurs in Nenets Autonomous district in NE European Russia, the Polar and Subpolar Urals, the lower course of the Yenisei River, on the Anabar Plateau, Orulgan Range and in Transbaikalia. The second species is also superficially somewhat similar to O. pallens, at least most its collections were so named in herbaria. However, it is characterized by having hyaline cells at leaf apices, and usually 1–2 teeth nearby it, as well as branched papillae on laminal cells, immersed to emergent capsules with 8 ribs at entire urn length, stomata half-covered by subsidiary cells, exostome teeth in pairs, 8 or 16 endostome segments, and smooth, hairless calyptra. This species grows mostly on siliceous rocks in cold areas of Siberia, both in northern regions and in high mountains. It is described as a new species, O. hyperboreum; its range includes Polar Urals, Byrranga Mts. in Taimyr, Anabar Plateau, Orulgan Range in the lower course of Lena River, and Chukotka.

Резюме

Ревизия образцов рода Orthotrichum s. str. показала, что два широко распространенных и не-
редких на севере Азиатской России вида не относятся ни к одному из хорошо известных видов
рода. Растения, произрастающие на заполненных основаниях стволов и валежин, ранее отно-
сились нами к O. holmenii, который с недавних пор рассматривается в качестве синонима O. scanicum. Согласно результатам наших молекулярно-филогенетических исследований, основанных на после-
довательностях ITS, сибирские растения не близки к O. scanicum; также они отличаются от этого вида морфологически, но соответствуют описанию и идентичны типу описанного Гренваллем на
основании сборов из низовьев Енисея O. sibiricum, впоследствии сведенному в синонимы к O.
pallens. Наши образцы заметно отличаются от O. pallens морфологически и по последовательностям ITS, так что название O. sibiricum восстановлено для вида, встречающегося на Полюарном и При-
полярном Урале, в низовьях Енисея, на Анабарском плато, хребте Орулган и в Забайкалье, и ранее относится к O. holmenii; идентичность типовых образцов O. holmenii нуждается в проверке. Второй широко распространенный в азиатской Гипоарктике вид встречается исключительно на заполненных глыбах силикатных горных пород. Ранее образцы этого вида были определены как O. pallens, несмотря на заметные отличия в морфологии, экологии и закономерностях распространения. Мо-
лекулярно-филогенетические данные также свидетельствуют в пользу самостоятельности этого
tаксона, который описывается под названием O. hyperboreum sp. nov. Вид отличается комбинацией
разветвленных папилл, гиалиновых зубцов на верхушке листа, погруженных или слегка высту-
пающих из перихециев коробочек с 8 мощными ребрами, погруженных устьиц, наполовину
прикрытых побочными клетками, попарно срастающихся зубцов эндостома, 8 или 16 сегментов
эндостома, гладких голья колпачков, а также произрастанием на силикатах и распространением в
азиатской Арктике и Гипоарктике (Полярный Урал, Бырранга, Анабарское плато, хребет Орулган,
Чукотка).

KEYWORDS: Orthotrichaceae, Russia, Arctic, Subarctic, Orthotrichum sibiricum, Orthotrichum
hyperboreum, biogeography, integrative taxonomy

1 Moscow State University, Biological Faculty, Geobotany Dept., Moscow 119234 Russia – Россия 119234, Москва, Московский
университет, Биологический факультет, каф. геоботаники. E-mails: fedosov_v@mail.ru, arctoa@list.ru.
2 Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow 119991 Russia. E-mail:
alina_77777@mail.ru
INTRODUCTION

Extensive collections of bryophytes made in 1876 during Swedish expedition along the Yenisei River by Hampus Wilhelm Arnell brought numerous specimens partly referred to previously unknown species. In the course of further study of the Siberian moss flora in 20th and early 21st century, some of these species were found in new localities, while some others are still known mostly from the type collections. Among other poorly known species, *Dorcadion sibiricum* Grönvall in Lindberg & Arnell was described based on specimens from three localities in lower course of Yenisei River and for a long time it was known only from that area. Warnstorf (1913) transferred this species to the genus *Orthotrichum* without any comments on its identity and relationship. After that, this name was forgotten for a long time until Jetty Lewinsky studied the type material while prepared the taxonomic treatment of Orthotrichaceae in Greenland, and found it to be conspecific with *O. pallens* Bruch ex Brid. (Lewinsky, 1977); this solution was followed by Ignatov et al. (2006).

Since the beginning of 21st century, an extensive studies of north Siberian moss flora resulted in plenty of specimens. These collections were partly identified and partly accumulated for the circumstantial revisions in the course of “Moss flora of Russia” project. Continental areas northward of 70th parallel are not the place where one could estimate rich and difficult flora of *Orthotrichum* s.str. Thus, at first we used rather broad circumscriptions of species elaborated for Europe by Lewinsky (1993a,b; 1995); however, in some cases combinations of morphological characters even of rather common species did not fit perfectly to the existing descriptions. Further inflating of morphological circumscriptions of European species seemed to be inappropriate, so we started to search for more relevant names for north Siberian taxa. Plants with well emergent to shortly exserted capsules, 16 exostome teeth and 16 endostome segments of the equal length, growing on silt-covered willow bases in river valleys were identified as *O. holmenii* Lewinskya-Haapasaaari (Fedosov et al., 2009). This species was described based on three specimens from Kazakhstan (Lewinskya-Haapasaaari, 1996), but later it was considered to be conspecific with *O. scanicum* (Medina et al., 2009). The latter species was reported in Russia from the Baikal area, Hamar-Daban Range (Kazanovsky, 1991) and in Teberdinsky State Reserve, West Caucasus (Ignatova et al., 2008), both in environments quite different from those in Subarctic Siberia or xeric Alma-Ata surroundings in Kazakhstan.

The second widely distributed and locally frequent north Siberian *Orthotrichum* is quite remarkable due to a combination of “*pallens*-like” morphology (i.e., lanceolate leaves, immersed to short emergent capsules with eight ribs, exostome teeth fused in pairs, 8 or 16 endostome segments and pale, smooth, naked calyptrae) and strictly saxicolous growth. These specimens were referred to *O. pallens* in publications on regional floras (Afonina, 2004; Fedosov & Ignatova, 2005; Fedosov et al., 2011; Ignatov et al., 2014), despite a differences in morphology, ecology and patterns of distribution. Hyaline teeth at leaf apex, composed of large, elongate, acute, protruding papillose cells are notable even for superficial study with the hand lens, and invariably numerous gemmae are not characteristic of *O. pallens*, which occurs in Europe mainly in temperate to hemiboreal climates, growing mostly on trees.

To sum up, since the integrative taxonomy implies dealing not only with the species morphology and molecular data, but with their ecology and distribution as well, it seems quite unlikely that these Siberian *Orthotrichum* entities represent one of well known European species. Since only three *Orthotrichum* species are quite widespread in Subarctic Siberia (the third one, *O. anomalum* Hedw., is common in places where calcareous bedrocks outcrop), it became necessary to check the identity of two other widespread taxa of *Orthotrichum* and to search for possible existing names for them. Aiming to prove our implications inferred from morphology, ecology and distribution, we employed a molecular phylogenetic approach.

MATERIALS AND METHODS

For morphological study, specimens from MW, MHA and LE were used. Nuclear ITS region was employed as the most variable and informative marker to resolve the relationships between the taxa of *Orthotrichum*. For molecular study, four specimens of “*O. holmenii*” and five specimens of “Siberian *O. cf. pallens*” were selected. Sequences of *O. pumilum* Sw. ex anon., *O. pallens*, *O. scanicum* and *O. moravicum* Plášek & Sawicki were downloaded from GenBank and seven newly obtained sequences of these species were added. Some other more distantly related species of the genus were involved to provide an adequate representation of main phylogenetic lineages. In total, 35 sequences were included in the analysis, 24 sequences were obtained de novo. Specimen vouchers and GenBank accessions are in Appendix 1.

Laboratory protocol was nearly the same as in previous moss studies described in detail by, e.g., Gardiner et al. (2005). For amplification and sequencing of ITS we used the primers of Fiedorow et al. (1998). The same primers were used for sequencing. The obtained sequences were aligned independently using MUSCLE (Edgar, 2004), and modified manually using BioEdit 7.0.9.0 (Hall, 1999). Four sequences of *Lewinskya speciosa* (Nees) Lara, Garilletti & Goffinet were included as an outgroup; all trees were rooted on the *L. speciosa*–clade.

Best-scoring Maximum Likelihood (ML) tree was estimated using RaxML (Stamatakis, 2006) from 1000 independent searches each starting from distinct random trees. Robustness of the nodes was assessed using the thorough bootstrapping algorithm (Felsenstein, 1985)
Bayesian analysis was performed using MrBayes version 3.2.6 (Ronquist et al. 2012), running in two parallel analyses, consisting each of six Markov chains of 10 000 000 generations with a sampling frequency of one tree each 2.5 thousand generations and the chain temperature at 0.05. Parameters of the substitution model were estimated during the analysis (six substitution categories, a gamma-distributed rate variation across sites approximated in four discrete categories and a proportion of invariable sites). Convergence of the analyses was evaluated using Tracer 1.4.1 (Rambaut & Drummond 2007) to check that ESS values were all greater than 200 (default burning). The consensus tree was then combined after first 25% of trees were discarded as a burn-in. All analyses were performed on the Cipress Science Gateway (http://www.phylo.org/portal2).

RESULTS

In both ML and BA analyses twelve involved species of the genus *Orthotrichum* form an ultimately supported clade, though topologies inferred from these analysis
slightly differ. The topology obtained from ML analysis with BS/PP values is shown in Fig. 1. Most of species, including “O. holmenii” (under the name. O. sibiricum) and “Siberian O. cf. pallens” (O. hyperboreum) are found in monospecific more or less supported clades, though the higher level groupings are mostly not supported. The highly supported clade (BS 99, PP=0.98) composed of two species with hairy vaginula, O. stramineum Hornsch. ex Brid. and O. patens Bruch ex Brid., splits on the first dichotomy. Then, after maximally supported O. tenellum Bruch ex Brid. clade, which splits on the next node, the not supported trichotomy with the remaining species crowns the tree.

It comprises three clades: (1) weakly supported (PP=0.93) clade of two subclades: O. holmenii (BS 98, PP=1) and O. anomalum (BS 98, PP=1); (2) weakly supported (PP=0.79) clade of single sequence of O. pulchellum Brunt. and maximally supported clade of two specimens of O. scanicum (BS 100, PP=1); (3) not supported clade which comprises rather weakly supported clades of “Siberian O. cf. pallens” (BS=84), then highly supported O. moravicum + O. pallens – clade (BS 99, PP=1), and weakly supported clades of two highly supported subclades formed by O. diaphanum Brid. (BS 100, PP=1) and O. pumilum (BS 96, PP=1).

In the tree inferred from Bayesian analysis, Orthotrichum-clade represents a polytomy with all-five specimens of “Siberian O. cf. pallens” in the basal position to the clades formed by all other species. The weakly supported O. pumilum & O. diaphanum clade and large not supported polytomic clade with the rest of species are nested in this polytomy (Fig. 1a). The latter comprises (1) moderately supported clade of O. holmenii plus O. anomalum; (2) not supported clade of O. tenellum and O. stramineum plus O. patens; (3) weakly supported clade of O. scanicum plus O. pulchellum; (4) well supported clade of O. pallens plus O. moravicum.

Discussion

Definitely a much more expanded dataset both in terms of taxonomical representation and number of employed markers is needed for Orthotrichaceae analysis. However, the obtained topologies are suggestive enough to estimate the taxonomic decisions for two poorly known Siberian taxa, which are in focus of the present study.

According to the obtained results, Subarctic specimens of “O. holmenii” are not related to the suboceanic O. pulchellum – O. scanicum – O. consimile group (Subgenus Pulchella sect. Pulchella), though all these species are similar in peristome morphology. Orthotrichum consimile was not included in the present study, while O. pulchellum and O. scanicum were found in one clade, while Siberian Subarctic “O. holmenii” formed another clade with another rather continental moss, O. anomalum of Subg. Orthotrichum (Fig. 1). Sawicki et al. (2012) also found that O. anomalum does not group with O. pallens, O. pumilum and other species of the Subgenus Pulchella. This means that Subarctic Siberian “O. holmenii” is unlikely identical with O. scanicum.

Despite the name Orthotrichum sibiricum has been for a long time considered as synonym of O. pallens, and one can propose that it could be applied to our “Siberian O. cf. pallens”, even superficial study of the protologue suggests that O. sibiricum has no single difference from O. holmenii as it is described by Lewinsky-Haapasaaari (1996). In particular, according to the protologue, O. sibiricum has dirty blackish green leaves (due to growth in occasionally flooded habitats), emergent capsules, stomata half-covered by the subsidiary cells, teeth fused in 8 pairs, splitting during spore release, and 16 slightly appendiculate endosome segments of equal length. All these characters are consistent with the description and illustrations provided by Fedosov et al. (2009) for O. holmenii and nearly identical illustrations were made by Lewinsky-Haapasaaari (1996) from the type specimen(s) of O. holmenii, though gemmae do not occur in every northern specimen. In addition, according to the protologue, O. sibiricum grows on Alnaster and Salix trunks near streams, and just in the same conditions all Russian specimens of O. holmenii were collected. The type specimen of O. holmenii was collected “on shrub by stream”.

Lectotype and isolectotype specimens of O. sibiricum in S were studied and they (1) fully correspond to the protologue; (2) are identical to our plants previously identified as O. holmenii, and (3) fully correspond to the protologue of the latter species. Thus, we suggest that (1) the name should be resurrected, and (2) all Siberian specimens previously identified as O. holmenii are to be referred to O. sibiricum. We cannot put O. holmenii into synonymy under O. sibiricum confidently, since we have not studied the type material of the former, but it is quite likely that they belong to one species. Difference in their distribution patterns is not that significant since recently “O. holmenii” was found in Transbaikalia (South Siberia), while Kazakhstan specimens were collected at ca. 1200 m, an equivalent to low elevation in Siberia.

Status of the second target taxon also seems to be obvious. Despite the grouping of “Siberian O. cf. pallens” is weakly supported, five obtained sequences are nearly identical and they definitely cannot be referred to any of the included species or a group of species (O. pallens & O. moravicum), since they form an almost maximally supported clade (BS 99, PP=1). The present topology is likely caused by the “plesiomorphic” character of the “Siberian O. cf. pallens” ITS sequence, which almost lacks synapomorphic characters, though at least one unique substitution within the present dataset is shared by all five studied specimens. Thus, the molecular data obtained for the “Siberian O. cf. pallens” if not clearly support, than at least do not contradict their segregation in a separate species. It worth to be mentioned that European O. pallens apparently represents a floc of related
species, and moreover, in the study of Sawicki et al. (2012) specimens corresponding to O. pallens morphologically were found in three not related clades: (1) with O. moravicum, (2) with O. pumilum and (3) with O. stramineum. Since sequences of their specimens are not available in GenBank, we cannot compare them with ones from “Siberian O. cf. pallens”, but since the latter is close neither to O. pumilum nor to O. stramineum and differs in distribution (O. pallens was described from Germany), our material definitely represents another species. The obtained topology reminds the one recently shown for Hedwigia emodica (Ignatova et al., 2016), which is widespread in the continental areas of Siberia and bears the set of plesiomorphic characters in its chloroplastic (trnL-trnF) and mitochondrial (Nad5) sequences.

Among existing names for this taxon, O. pallidum Grönvall looks especially well corresponding to “Siberian O. cf. pallens”. However, this name in illegitimate (Lewinsky, 1977) and considering also that the old collections unlikely can be sequenced, reducing the evidence of the species identity, we propose to describe “Siberian O. cf. pallens” as a new species, O. hyperboreum (see below).

TAXONOMY

Orthotrichum sibiricum (Grönvall) Warnst., Hedwigia 53: 312. 1913.—Dorcadion sibiricum Grönvall in Lindbl. & Arnell, Kongl. Svenska Vetensk.-Akad. Handl. 23(10): 96. 1890. Type: Siberia: Yenisei, Nikandrovskij Dorcadion. Diagnosis. Orthotrichum hyperboreum resembles O. pallens in papillose leaf cells, short setae, immersed to emergent, strongly 8-ribbed capsules, stomata rather slightly covered by the subsidiary cells, exostome teeth in pairs, mostly 16 endostome segments and pale, naked, smooth calyptrae, but differs from the latter in having apiculate leaves with one (up to three) elongate hyaline apical cells, strongly 8-ribbed capsules, stomata rather emergent, strongly 8-ribbed capsules, but differs from the latter in having apiculate leaves with one (up to three) elongate hyaline apical cells, strongly thick-walled cells with spine-like protruding papillae just below apex, forked papillae on the leaf lamina, saxicolous growth and continental north Asian distribution.

Etymology. The name reflects its distribution in high altitudes: all known localities are situated northward the polar circle, while the northernmost one was found in Byrranga Range, inner Taimyr, the northernmost continental mountain system, where the species is the only representative of the genus Orthotrichum s.str.

Description. Plants small, dark-green or, rarer, in lighter environments, yellow-green or bright green, in compact tufts. Stems 0.6–0.8 cm long, poorly branched, strongly tomentose in lower part. Leaves appressed, straight or slightly to moderately curved then dry, erect to spreading when moist, 1.8–2.3×0.5–0.7 mm, ovate-lanceolate, distinctly keeled, obtuse or acute, apiculate; costa green, rather indistinct, ending just below leaf apex, with simple and forked papillae on abaxial surface; lamina unistratose; margins recurved from leaf base to near apex on both sides, entire or slightly crenulate distally due to protruding papillae, distinctly dentate at apex with

hyaline dentils composed of irregularly thickened cell walls; upper laminal cells elongate or isodiametric, (9–)12–16(–18) 9–12 μm, with (1–)2–3 simple or branched papillae per cell, moderately thick-walled, 1(–2) apical cells hyaline, elongate, ca. 20–35 μm, few cells below it with thicker walls, often decolorized, with high, spine-like protruding papillae; basal laminal cells rectangular, (14–)19–34(–40)×8–14 μm, with moderately thickened walls, smooth, somewhat narrower and shorter toward margins, short rectangular to subquadrate along margin. Goniautoicous. Perichaetial leaves not differentiated. Vaginula with few (2–3) short hairs. Setae 0.2–0.5 mm, spirally twisted, mostly straight. Capsules immersed to short emergent, oblong-cylindrical, later urceolate, 1.2–1.6 mm long, yellowish, later reddish-brown, deeply 8-furrowed at nearly entire urn length, urns sharply tapering to the seta, without neck, somewhat constricted below mouth.

Stomata in two rows in central and lower part of capsules, immersed, in the middle part of capsules half- or somewhat stronger covered with subsidiary cells, at capsule base almost free; exothecial bands of (3–)4(–6) cells rows. Peristome double, prostome not observed. Exostome teeth in 8 pairs, not split when mature, incurved when wet, reflexed and appressed to capsule wall when dry, fragile, orange-red; outer surface (OPL) transversely striolate in 1–2 proximal cells, in proximal part finely papillose; inner surface (PPL) indistinctly striolate proximally, finely papillose distally. Endostome with low, 2–3 cells high basal membrane, typically of 16 (8 longer + 8 shorter) brownish segments composed of two cell rows, smooth or indistinctly striolate on outer surface, weakly papillose on inner surface, longer than teeth or nearly of the same length, intermediate segments fragile, occasionally absent; in some specimens capsules with 16 appen-
diculate segments of equal length occasionally occur. Operculum red-rimmed, with rather long beak. Spores papillose, brownish, 13–18 μm. Calyptra campanulate, opaque, whitish, with dark brown apices and 8 sharp plicae, naked, smooth.

Distribution and ecology. Orthotrichum hyperboreum seems to be rather widespread in montane hypoarctic areas of Asia (Fig. 5), at least we found it being not rare in some areas of Kotuyskoe Plateau, Khara-Tas Range, Anabar Plateau and Polar Ural, with one locality in Byrranga Range, Arctic Taimyr. Besides this, we revealed two specimens from Yakutia (Orulgan Range and Ust-Maya Dist.) and one from Chukotka. Typically, this species grows in moist, shaded niches of basaltic, dolerite, andesite, gneiss, gabbro and dunite rocks (once it was collected on bark of spruce) in upper part of forest belt and above/northward of timberline, up to 1500 m a.s.l. in Yakutia.

Specimens examined: ASIAN RUSSIA: Yamal-Nenets autonomous District: vicinity of Laborovaya settl., Nyravyohydata creek upper course, 13.VIII.2017, Fedosov 17-2-136-I (MW); the same area, 15.VIII.2017, Fedosov 17-2-170-I (MW); Krasnoyarsk Territory, Taimyr Municipal District: Taimyr Peninsula, Byrranga Ms near northern shore of Ledyanaia Bay of Taimyr Lake, Peregay Creek middle course, 17.VII.2004, Fedosov (MW 9049167); Kotuyskoe Plateau, Maymecma River valley along Kogotok Creek, 26.VI.2009, Fedosov (MW 9051242); vicinity of Medvezhya River mouth, 13.VII.2005, Fedosov (MW 9049165); the same area, Ary-Dzhang Plateau, 20.VII.2005, Fedosov (MW 9049166); Kotuy River valley near Potakaj Creek mouth, 18.VIII.2011, Fedosov (MW 9051239); the same place, 16.VIII.2011, Fedosov (MW 9051241); Anabar Plateau, Kotuykan River valley 7 km upstream Merkyu River mouth, 21.VII.2011, Fedosov (MW 9051240); north periphery of the Anabar Plateau, slope of Fomich River valley 3 km upstream its mouth, 17.VII.2008, Fedosov (MW 9049164); the same area, 11.VII.2008, Fedosov 08-418 (MHA); Rossokha River middle course near Pestrye Skaly area, Sakha-Yuryakh Creek Mouth, 27.VII.2008, Fedosov 08-181 (MHA). Republic Sakha (Yakutia): Eveno-Bytantaysky Distr., Orulgan Range, Tumara Creek valley, 31.VII.2011, Ignatov (MW 9051243); Ust-maya Dist., Tarbagannakh Creek, 61°07’N, 138°16’E, 1200–1600 m a.s.l., Ignatov 09-203 (MHA). Chukotsky Autonomous Dist.: southern extremity of Pekul’ney Range, middle course of South Pekul’nuyveem River, 8.VIII.1979, Afonina s.n. (LE).

Differentiation. Due to the elongate hyaline apical cell or hyaline-dentate leaf apex, which is easy to recognize in the field, specimens of O. hyperboreum somewhat resemble Zygodon, but immediately differ in abundant sporophyte production, with immersed to emergent capsules, strongly 8-ribbed, with well-developed double peristome, and naked campanulate calyptrae. Due to continental Subarctic distribution and remarkable habitats, where no one Orthotrichum species excepting O. sibiricum grows, O. hyperboreum can be easily recognized. It differs from O. sibiricum in obtuse to apiculate leaves...
Fig. 4. Orthotrichum hyperboreum (from holotype). 1 – habit, dry; 2 – peristome; 3 – calyptra; 4 – leaf transverse section; 5 – capsule; 6, 8 – apical portions of leaf; 7 – exothecial cells and stoma; 9 – median laminal cells; 10–13 – leaves. Scale bars: 2 mm for 1, 2, 5; 1 mm for 10–13; 200 μm for 2; 100 μm for 4, 6–9.

[IGNATOV, E.A., M.S. IGNA TOV, N.A. KONSTANTINOVA, V.I. ZO LOTOV & V.G. ONIPCHENKO] ИГНАТОВА Е.А., М.С. ИГНАТОВ, Н.А. КОНСТАНТИНОВА, В.И. ЗОЛОТОВ И В.Г. ОНИПЧЕНКО. Библиография...
Appendix 1

<table>
<thead>
<tr>
<th>species</th>
<th>code</th>
<th>Locality</th>
<th>Herbarium & specimen ID</th>
<th>GB accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewinska speciosa</td>
<td>OF31</td>
<td>Vladimir Province</td>
<td>MW 9051449</td>
<td>MG697238</td>
</tr>
<tr>
<td>Lewinska speciosa</td>
<td>OF55</td>
<td>Moscow Province</td>
<td>MW 9051488</td>
<td>MG697239</td>
</tr>
<tr>
<td>Lewinska speciosa</td>
<td>OF70</td>
<td>Kursk Province</td>
<td>MW 9051539</td>
<td>MG697240</td>
</tr>
<tr>
<td>Orthotrichum anomalum</td>
<td>OF4</td>
<td>Anabar Plateau 1</td>
<td>MW 9050960</td>
<td>MG697242</td>
</tr>
<tr>
<td>Orthotrichum anomalum</td>
<td>OF5</td>
<td>Anabar Plateau 2</td>
<td>MW 9050972</td>
<td>MG697241</td>
</tr>
<tr>
<td>Orthotrichum anomalum</td>
<td>OF25</td>
<td>Anabar Plateau 3</td>
<td>MW 9051249</td>
<td>MG697243</td>
</tr>
<tr>
<td>Orthotrichum hyperboreum</td>
<td>OF20</td>
<td>Anabar Plateau 1</td>
<td>MW 9051240</td>
<td>MG697248</td>
</tr>
<tr>
<td>Orthotrichum hyperboreum</td>
<td>OF22</td>
<td>Yakutia, Orulgan Range</td>
<td>MW 9051243</td>
<td>MG697249</td>
</tr>
<tr>
<td>Orthotrichum hyperboreum</td>
<td>OF51</td>
<td>Anabar Plateau 2</td>
<td>MW 11-1365</td>
<td>MG697250</td>
</tr>
<tr>
<td>Orthotrichum hyperboreum</td>
<td>OF59</td>
<td>Polar Ural 1</td>
<td>MW 17-2-170-2</td>
<td>MG697251</td>
</tr>
<tr>
<td>Orthotrichum hyperboreum</td>
<td>OF60</td>
<td>Polar Ural 2</td>
<td>MW 17-2-136-1</td>
<td>MG697252</td>
</tr>
<tr>
<td>Orthotrichum pallens</td>
<td>OF19</td>
<td>Lipetsk Province 1</td>
<td>MW 9051214</td>
<td>MG697258</td>
</tr>
<tr>
<td>Orthotrichum pallens</td>
<td>OF39</td>
<td>Bashkortostan Republic</td>
<td>MW 9051238</td>
<td>MG697257</td>
</tr>
<tr>
<td>Orthotrichum pallens</td>
<td>OF63</td>
<td>Ryazan’ Province</td>
<td>MW 9051206</td>
<td>MG697261</td>
</tr>
<tr>
<td>Orthotrichum pallens</td>
<td>OF52</td>
<td>Lipetsk Province 2</td>
<td>MW 9051217</td>
<td>MG697262</td>
</tr>
<tr>
<td>Orthotrichum pallens</td>
<td>OF53</td>
<td>Karachaevo-Circassian</td>
<td>MW 9051232</td>
<td>MG697259</td>
</tr>
<tr>
<td>Orthotrichum pumilum</td>
<td>OF26</td>
<td>Belgorod Province</td>
<td>MW 9051271</td>
<td>MG697254</td>
</tr>
<tr>
<td>Orthotrichum scanicum</td>
<td>OF79</td>
<td>Karachaevo-Circassian</td>
<td>MW 9051368</td>
<td>MG697256</td>
</tr>
<tr>
<td>Orthotrichum sibiricum</td>
<td>OF11</td>
<td>Anabar Plateau 1</td>
<td>MW 9051023</td>
<td>MG697244</td>
</tr>
<tr>
<td>Orthotrichum sibiricum</td>
<td>OF12</td>
<td>Anabar Plateau 2</td>
<td>MW 9049168</td>
<td>MG697245</td>
</tr>
<tr>
<td>Orthotrichum sibiricum</td>
<td>OF58</td>
<td>Polar Ural</td>
<td>MW 17-2-115-1</td>
<td>MG697246</td>
</tr>
<tr>
<td>Orthotrichum sibiricum</td>
<td>OF61</td>
<td>Subpolar Ural</td>
<td>MW 9051021</td>
<td>MG697247</td>
</tr>
<tr>
<td>Orthotrichum tenellum</td>
<td>OF33</td>
<td>Karachaev-Circassian</td>
<td>MW 9051587</td>
<td>MG697255</td>
</tr>
<tr>
<td>Orthotrichum tenellum</td>
<td>OF40</td>
<td>Krasnodar Territory</td>
<td>MHA M-221</td>
<td>MG697253</td>
</tr>
</tbody>
</table>

