Lithobius (Monotarsobius) tanagolus sp.n., a new lithobiid species (Chilopoda, Lithobiomorpha) from southern Siberia, with remarks on the closely related L. (M.) holstii (Pocock, 1895)

Lithobius (Monotarsobius) tanagolus sp.n., новая костянка (Chilopoda, Lithobiomorpha) из Южной Сибири, с замечаниями о близком виде L. (M.) holstii (Pocock, 1895)

G.Sh. Farzalieva
Г.Ш. Фарзалиева

Perm State University, Bukireva Street 15, Perm, Russia, 614990. E-mail: g.farzalieva@yandex.ru
Пермский государственный национальный исследовательский университет, ул. Букирева 15, Пермь 614990 Россия.

KEY WORDS: taxonomy, Lithobiidae, new species, southern Siberia, Far East of Russia.
КЛЮЧЕВЫЕ СЛОВА: таксономия, Lithobiidae, новый вид, Южная Сибирь, Дальний Восток России.

ABSTRACT. A new species, Lithobius (Monotarsobius) tanagolus sp.n., is described from southern Siberia, Russia. The new species shows no apomorphies, but is defined by a unique combination of characters. It seems to be the closest to L. (M.) holstii (Pocock, 1895), but the female of L. tanagolus sp.n. differs well from that of L. holstii by the presence of a distodorsal spine on the first gonopodal segment and the armament of the second and third gonopodal segments. A refined diagnosis of L. (M.) holstii is given and its distribution mapped.

How to cite this article: Farzalieva G.Sh. 2018. Lithobius (Monotarsobius) tanagolus sp.n., a new lithobiid species (Chilopoda, Lithobiomorpha) from southern Siberia, with remarks on the closely related L. (M.) holstii (Pocock, 1895) // Arthropoda Selecta. Vol.27. No.1. P.22–30. doi: 10.15298/arth sel. 27.1.02

РЕЗЮМЕ. Описан новый вид литобиоморфной многоножки Lithobius (Monotarsobius) tanagolus sp.n. из Южной Сибири (Россия). Новый вид не имеет уникальных признаков, а отличается от близких видов комбинацией признаков. Кажется, он наиболее близок к L. (M.) holstii (Pocock, 1895), но самки L. tanagolus sp.n. хорошо отличаются от самок L. holstii присутствием дистодорсального шипа на первом членике гонопода самки, а также дорсальным вооружением второго и третьего члеников гонопода. Для L. holstii приводится уточненный диагноз и карта распространения.

Introduction

Monotarsobius Verhoeoff, 1905 is a large subgenus of the genus Lithobius Leach, 1814. The world fauna of Monotarsobius contains ca 115 species or subspecies [Bonato et al., 2011; Ma et al., 2014a, b], of which 23 valid species are known from Russia [Zalesskaja, 1978; Farzalieva, Zalesskaja, 2003; Farzalieva, Esyunin, 2008; Danyi, Tuf, 2012; Zuev, 2017].

A collection of lithobiids from the Altai Republic, Russia, stored in the Zoological Museum of Moscow University (ZMMU), has yielded a new species of Monotarsobius. In addition, several specimens of this species have also been located in new material from the Kemerovo Region, Russia.

The new species belongs to the group of Monotarsobius species that show neither well-expressed secondary sexual characters in the male nor apomorphies, being distinguished by a unique combination of characters. Lithobius (Monotarsobius) tanagolus sp.n. seems to be particularly similar to L. (M.) holstii (Pocock, 1895), from Japan (Ashinouju). The objective of the present is to describe the new species, as well as refine the diagnosis and distribution of L. (M.) holstii.

Material and methods

The material underlying the present study was largely collected by S.I. Golovatch, A.V. Tanasevitch and A.L. Tikhomirova in the Altai Republic (Lake Teletskoye and the Altai Nature Reserve, southern Siberia), as well as by L.A. Trilikauskas in the Shorsky National Park, Kemerovo Region, Russia. Most of the material is currently deposited in the collections of the Zoological Museum of the Lomonosov Moscow State University, Moscow, Russia (ZMUM; curator: A.A. Schileyko) and the Perm State University, Perm, Russia (PSU; curator: G. Sh. Farzalieva).

Measurements. The total body length was measured from the fore margin of the cephalic plate to the posterior end of the postpedal tergite. Leg length was mea-
A new Lithobius (Monotarsobius) species from southern Siberia

NON-TYPE MATERIAL. 2 $\odot \odot$ (ZMMU), Altai Republic, Lake Teletskoye, near Artybash, 51°47′N, 87°14′E, *Picea obovata*, *Abies sibirica* and *Pinus sibirica* taiga, 500–800 m a.s.l., 13–24.VII.1997; 5 $\odot \odot$, 2 \odot (PSU), same locality, high bog in *Picea obovata*, *Abies sibirica* and *Pinus sibirica* taiga forest, 800 m a.s.l., 20.VII.1997, all leg. S.I. Golovatch & A.V. Tanasevich; 20 $\odot \odot$, 18 \odot (ZMMU), 1 \odot, 1 \odot (PSU), Altai Republic, Altai Nature Reserve, litter, IX.1969, leg. A.L. Tikhomirova; 3 $\odot \odot$, 7 \odot (PSU), Kemerovo Area, Shorsky National Park, near Verkhny Taymet, 52°29′N, 88′16′E, *Abies* forest with *Tilia*, *Pinus sibirica* taiga with *Vaccinium* and *Betula* forest, 20.VII.–11.VIII.2016; 2 \odot (ZMMU), Kemerovo Area, Biyskaya Griva Mt. Range, *Pinus sibirica* taiga 11.VII.2016, all leg. L.A. Trilikauskas.

NAME. The species is a combined abbrevia-

DIAGNOSIS. A *Lithobius* (Monotarsobius) species with body 6.3–10.0 mm long, antennae composed of 17–21 articles, commonly 19+19; 7–11 ocelli on each side on head, commonly 8–9, arranged in 3 rows; Tömösváry’s organ as large as nearest ocellus, 2+2 other seriate ocelli. Tömösváry’s organ as large as nearest ocellus, 2+2 acute teeth and setiform porodonts, median diastema V-shaped, with a poorly-expressed dorsal sulcus on Ti 15; in both sexes, legs 15 more densely setose ventrally than dorsally (Figs 4, 6–7).

Table. Plectrotaxy of *Lithobius tanagolus* sp.n., holotype. Brackets show the presence of an asymmetric spine in one of leg-pairs.

<table>
<thead>
<tr>
<th>Leg</th>
<th>Ventral</th>
<th>Dorsal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3–5</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>6</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>7–9</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>–</td>
<td>mp</td>
</tr>
<tr>
<td>11</td>
<td>–</td>
<td>mp</td>
</tr>
<tr>
<td>12–13</td>
<td>–</td>
<td>mp</td>
</tr>
<tr>
<td>14</td>
<td>m</td>
<td>amp</td>
</tr>
<tr>
<td>15</td>
<td>m</td>
<td>amp</td>
</tr>
</tbody>
</table>

Taxonomic part

Lithobius (Monotarsobius) tanagolus sp.n.

Figs 1–14, 19, Map 1.

DESCRIPTION. Holotype \odot. Body ca 9.7 mm long, 1.2 mm wide (at T10); colour in alcohol yellow-brownish. Glands of tergites: dental margin slightly concave, with 2+2 acute teeth and setiform porodonts, median diastema V-shaped, shoulders of coxosternite strongly sloping, as in Figs 2, intermediate T slightly broadened, breadth/length ratio 1.04 (length 0.68 mm, breadth 0.70 mm). Cephalic plate: breadth/length ratio 1.02 (breadth 0.80 mm, length 0.78 mm); breadth/breadth ratio of cephalic plate at T′ 1.20 (breadth of T′0.8 mm). Antennae short, reaching the middle of T5, composed of 19+19 short articles, first two slightly elongated (Fig. 5). Ocelli: 8 on each side, dark, arranged in three rows; posterior and posterosuperior ocelli poorly distinguished in size from other seriate ocelli. Tömösváry’s organ as large as nearest ocellus, rounded (Fig. 1). Forcipular coxosternite: dental margin slightly concave, with 2+2 acute teeth and setiform porodonts, median diastema V-shaped, shoulders of coxosternite strongly sloping, as in Figs 3, 19.

Tarsal articulation of legs 1–13 indistinct, tarsi distinctly longer than tibiae. Legs 14 and 15 slightly incrassate, with glandular pores on lateral and ventral
Fig. 1—10. Lithobius tanagolus sp.n. 1 — ♂ head, lateral view (paratype); 2 — ♂ rear body fragment, dorsal view (paratype); 3 — ♀ forcipula, ventral view (non-type), 4 — ♀ rear body fragment, ventral view (non-type); 5 — ♂ antenna, lateral view (non-type); 6 — ♂ legs 15, ventrolateral view (paratype); 7–10 — ♂ leg 15, prolateral, retrolateral, dorsal and ventral views, respectively (non-type). Scale 1 mm.

Рис. 1–10. Lithobius tanagolus sp.n. 1 — голова самца, латерально (паратип); 2 — задняя часть тела самца, дорсально (паратип); 3 — ногочелюсть самки, вентрально (нетиповой материал), 4 — задняя часть тела самки, вентрально (нетиповой материал); 5 — антенна самца, латерально (нетиповой материал); 6 — нога 15 самца, вентролатерально (паратип); 7–10 — нога 15 самца, пролатерально, ретролатерально, дорсально и вентрально, соответственно (нетиповой материал). Масштаб 1 мм.
A new Lithobius (Monotarsobius) species from southern Siberia

Figs 11–18. Lithobius tanagolus sp.n. (paratype) (11–14) and Lithobius holstii (Pocock, 1895) (15–18). 11, 15 — ♀ gonopod, dorsal view; 12, 18 — claw of ♀ gonopod, ventral view; 14, 16 — fragment of first segment of ♀ gonopod, from inside; 13, 17 — ♀ gonopod, lateral view. Scale 0.1 mm.

Рис. 11–18. Lithobius tanagolus sp.n. (паратип) (11–14) и Lithobius holstii (Pocock, 1895) (15–18). 11, 15 — гонопод самки, дорсально; 12, 18 — коготь гонопода самки, вентрально; 14, 16 — фрагмент первого членика гонопода самки, изнутри; 13, 17 — гонопод самки, латерально. Масштаб 0,1 мм.
surfaces. Legs 15 with DaC. Accessory spine on leg 15 large, well-developed. Plectrotaxy as in Table. Coxal pores: present on legs 12–15, large and rounded; inner pores smaller than neighbouring ones; distance between pores varying, but generally not exceeding the diameter of neighboring pore (Fig. 4); formula 3,4,4(5),4(5). Gonopods without setae on internal face, with 2+2 slender and sharp spurs separated from one another by distances greater than diameter of the widest part of a spur (Fig. 14). First segment of gonopod with one spine, second with 3, third with one dorsal spine (Fig. 11). Claw of gonopod tridentate, lateral denticles unequal: external lateral denticle displaced to the middle of external ridge (Fig. 13), whereas internal denticle located closer to tip of apical claw (Fig. 12).

Paratype ♀♂. Length 6.3–9.9 mm, breadth 1.0–1.3 mm. All other characters as in holotype, but ocelli 7–11, usually 8–9 in three rows (Fig. 1). Posterosuperior and posterior ocelli in some specimens slightly larger than seriate ones. Antennomeres varying from 15 to 19, mainly 19+19 antennomeres. Intermediate T either slightly broadened as in holotype or equal in breadth and length. Legs 12 with 3 pores in all specimens, number of coxal pores on legs 13–15 varying from 3 to 5. Gonopods: second segment usually with 3 dorsal spines (in two specimens second segment with 4 spines on one of gonopod); gonopodal claws tridentate, but in some specimens external lateral denticles poorly-expressed.

Paratype ♂♂. All characters as in ♀♀, but body length 6.5–10.0 mm; intermediate T slightly elongate or equal in breadth and length. Legs 14 and 15 slightly incrassate, without clearly expressed secondary sexual characters, with glandular pores on lateral and ventral surfaces. Ti 15 in adult ♂♂ (large and well-sclerotized) with a poorly-developed distodorsal sulcus, the latter never crossing entire Ti (Figs 7–8). In most ♂♂, sulcus visible from half to 2/3 tibia and extending to its distal margin (when viewed from above, the sulcus is poorly visible, as in Fig. 9). In young ♂♂ (but with developed gonopods) no such sulcus is visible. Plectrotaxy as in holotype, but some specimens with 14VpF. Coxal pores as in holotype, their number varying from 2 to 5. Gonopods 1-segmented, small and low, with a single seta.

VARIATION. Some specimens show an asymmetric number of antennomeres, ocelli and spinulations on the right and left ♂♂ gonopods. Thus, the most common situation is a different number of antennomeres on the left and right antennae (usually, one of the antennae consists of 19 antennomeres) and a variable number of ocelli (the difference is usually 1, rarely 2 ocelli). The structure of the ♂ gonopods is relatively stable: in most ♀♀ the 2nd gonopodal segment is with 3, rarely 4 dorsal spines (Fig. 11); the claws are three-dentated, and the internal lateral denticle is always well-developed, while the external lateral denticle is shifted from the apex to the middle of the claw and is poorly-expressed in some specimens.

Plectrotaxy is relatively stable, but in some specimens DaP begin from leg-pair 9 and VaF from leg-pair 3.

REMARKS. The new species belongs to the subgenus Monotarsobius, based on the clearly unipartite tarsi of legs 1–13, 19-segmented antennae, the absence of...
Lithobius tanagolus sp.n. show no apomorphies, but differs from other species by a unique combination of characters. Thus, both sexes of *L. tanagolus* sp.n. differ from all Palaearctic *Monotarsobius* species by (1) 19-segmented antennae, (2) the large accessory spine on leg 15, (3) the usually 8–9 (rarely 7, 10–11) dark ocelli arranged in three rows, (4) the large Tömös-váry’s organ that is slightly larger than or equal to the neighboring ocellus, (5) 2+2 acute teeth and (6) the sloping shoulders of the forcipular coxosternite. In addition, have a rare feature, i.e. the dorsal spine on the 1st gonopodal segment, but differs from all Palaearctic *Monotarsobius* species by (1) the presence of a distodorsal spine on the 1st gonopodal segment, (2) the large accessory spine in both sexes.

Lithobius tanagolus sp.n. is especially similar to *L. (Monotarsobius) holstii* (Pocock, 1895), recorded from the Kurile Islands [Eason, 1996], China and Japan [Takakuwa, 1941; Pei et al., 2011], but differs in the sloping shoulders of the forcipular coxosternite (cp. Figs 19 and 20), the number of ocelli (7–11 in *L. tanagolus* sp.n. vs. 5–6, rarely as many as 9 in *L. holstii* [Eason, 1996], cp. Figs 1 and 25 & 27), the number of antennomeres (usually, 19 in *L. tanagolus* sp.n. vs. 20 (our data) or 19–20 (rarely 17 or 21 in *L. holstii* [Eason, 1996]) and some protocoxa details (14 VaTi and 14 DaC in *L. holstii* vs. without such in *L. tanagolus* sp.n.). The of *L. tanagolus* sp.n. differs well from *L. holstii* by (1) the presence of a distodorsal spine on the 1st gonopodal segment (absent in *L. holstii*) and (2) the armament of the 2nd and 3rd gonopodal segments (cp. Figs 11 and 15). In addition, is devoid both of setae and spines on the inner surface of the 1st gonopodal segment (cp. Figs 14 and 16).

On the other hand, the of *L. tanagolus* sp.n. is similar to the of *L. (Monotarsobius) insolens* Dáñyi et Tuf, 2012 and *L. (Monotarsobius) worogowensis* Eason, 1976 by the structure of the gonopods, but differs from the 19-segmented antenna (vs. 20-segmented in *L. insolens* and *L. worogowensis*) and protocoxa, especially, 15 DaC in the new species vs. 9–15 DaC in *L. insolens* and 13–15 in *L. worogowensis* (for details see [Farzalieva, 2006: 107]).

Finally, *L. tanagolus* sp.n. is also somewhat similar to further two *Lithobius (Monotarsobius)*, namely, *L. songi* Pei, Ma, Shi, Wu et Zhou, 2011, from Hebei Province, and *L. zhangi* Ma, Pei, Hou et Zhu, 2014, from Shandong Province, both showing a close body length, 19+19 antennomeres, 2+2 coxosternal teeth, 2+2 spurs and a tridentate first gonopodal claw. However, *L. tanagolus* sp.n. is well-distinguished from the latter two species by the presence of an accessory spine on leg 15 (leg 15 devoid of such in *L. songi* and *L. zhangi*) and 3–5 coxal pores (vs. 1–2 in *L. songi* and *L. zhangi*). In addition, the new species differs from *L. songi* and *L. zhangi* by the number of ocelli (8–9 vs. 6–7 in *L. songi* and 5–6 ocelli in *L. zhangi*), the leg protocoxa (e.g. 15 DaC in *L. tanagolus* sp.n. vs. 14–15 DaC in *L. songi* and in *L. zhangi*; for more details see [Pei et al., 2011; Ma et al., 2014b]), as well as in the presence of a dorsolateral spine on the first gonopodal segment (absent in *L. songi* and *L. zhangi*).

DISTRIBUTION (Map 1). The Altai Republic and Kemerovo Region.

Lithobius (Monotarsobius) holstii Pocock, 1895

Figs 15–18, 20–27, Map 2.

Lithobius holstii Pocock, 1895, 349.

Monotarsobius takakuwai Verhoeff, 1937, 188, 193.

Monotarsobius crassipes holstii: Takakuwa, 1941, 292, fig. 1.

Lithobius (Monotarsobius) holstii: Eason, 1996, 121, Figs 12–13 (♀).

Lithobius (Monotarsobius) holstii: Ma et al, 2014b, 336, 345.

DIAGNOSIS. Body length 9–13 mm, uniformly yellow in alcohol, antennae composed 19–21 articles, commonly 20+20; 5–6 ocelli on each side, commonly 6, arranged in two rows; Tömös-váry’s organ longer than adjoining ocelli; 2+2 coxosternal teeth; porodonts longer than adjoining tooth; number of coxal pores varying from 3 to 6, generally 4; gonopods with 2+2 spurs; 1st gonopodal segment with a group of short setiform spines on internal face, but without dorsolateral spines; 2nd segment with 6–8 long and stout dorsolateral spines; terminal claw bidentate (tridentate in young ♀♂); leg 15 without modifications, but with an accessory spine in both sexes.

DESCRIPTION. See Zalesskaja [1978] and Eason [1996].

REMARKS. The species was sufficiently completely redescribed by Eason [1996], also based on samples from the Kuriles, but some new features of gonopodal structure have become found in females. In particular, an important diagnostic feature that was noted neither in the original description [Pocock, 1895] nor in the redescription [Eason, 1996] is that the 1st gonopodal segment on the inner surface bears a group of short, well distinguishable spines (sometimes the spines are not the same in size, some of them resembling short setae) (Fig. 16). In addition, the dorsal armament of the 2nd gonopod shows the following distinctive features: 1st segment without spines, 2nd one with a group of sharp and powerful, often twinned, rather long spines, their number varying, but always greater than 6; 3rd segment with 2–3 same spines (Figs 15, 18). All specimens examined have a uniformly yellow coloration (Fig. 21, 26–27), legs 15 are densely setose in both sexes (Figs 21, 23).
Figs 19–27. Lithobius tanagolus sp.n (non-type) (19) and Lithobius holstii (Pocock, 1895) (20–27). 19–20 — dental margin of forcipular coxosternite; 21 — ♀ rear body fragment, ventrolateral view; 22 — forcipula, ventral view; 23–24 — ♀ leg 15, prolateral and retrolateral views, respectively; 25 — ♀ ocelli and Tömösváry’s organ, lateral view; 26 — ♀ rare body fragment, dorsally; 27 — ♂ head, lateral view. Scale: 19–20 — 0.1 mm, 25 — 0.2 mm, 21–24, 26–27 — 1 mm.

DISTRIBUTION (Map 2). The species appears to be distributed along the eastern coast of Asia: from Singapore in the south to Kunashir Island in the north. Ashinoju, Japan (35°14′N, 139°06′E) (type locality) [Pocock, 1895]; Mount Fuji, Japan (35°21′N, 138°44′E) [Attems, 1909]; Puli, Taiwan (23°58′N 120°58′E) and Taipei, Taiwan (25°02′N, 121°32′E) [Takakawa, 1941]; Kunashir Island, Kurile Islands, Russia: Yuzhno-Kurilsk (44°02′N, 145°51′E), Mendeleev Volcano (43°58′N, 145°44′E), Lake Aliger (44°2′N, 145°44′E) and Shikotan Island, Kuriles (43°48′N, 146°45′E) [Eason, 1996]; Nantou, Taiwan (23°55′N, 120°41′E) [Wang, 1959]; Shengsi City, Zhejiang Province, China (30°43′N 122°27′E) and Republic of Singapore (1°21′N, 103°51′E) [Chamberlin, Wang, 1952]; Kunashir Island, Kurilskiy Nature Reserve, Russia (44°05′N, 145°59′E) (our data).

ACKNOWLEDGMENTS. The author wishes to thank S.I. Golovatch (Moscow, Russia) for kindly editing of an advanced draft. Special gratitude goes to S.L. Esyunin (Perm, Russia) for his constant guidance, encouragement and support, as well as to Ark.A. Schiletyko (Moscow, Russia) and L.A. Trilikaukas (Novosibirsk, Russia) for the provision of material for study.

References

