Taxonomic and faunistic notes on *Hydrotaea unispinosa* Stein, 1898 (Diptera: Muscidae)

Nikita E. Vikhrev¹, Ilya A. Gomyranov²

¹ Zoological Museum of Moscow University, Bolskaya Nikitskaya 6, Moscow 125009, Russia. E-mail: nikita6510@ya.ru
² Department of Entomology, Lomonosov Moscow State University, Vorobiovy Gory 1-12, Biological Faculty, Moscow 119991, Russia. E-mail: gomyranov@yandex.ru

Кафедра энтомологии, Биологический факультет МГУ им. М.В. Ломоносова, Воробьевы Горы 1-12, Москва 119991, Россия.

ABSTRACT. The situation with records of Nearctic *Hydrotaea unispinosa* Stein, 1898 from Asia is clarified. *H. unispinosa* is actually present in N Oriental and E Palaearctic regions. New synonymies are proposed: *H. unispinosa* = *Hydrotaea silva* Hsue, 1976 syn.n. = *Hydrotaea gandakiana* Shinonaga, 1994, syn.n.

KEY WORDS: *Hydrotaea unispinosa*, *Hydrotaea silva*, *Hydrotaea gandakiana*, Muscidae, Diptera, new synonymies

INTRODUCTION. Treating *Hydrotaea* specimens collected in last years and preserved in Zoological Museum of Moscow University (ZMUM), we identified the series collected in the North part of the Oriental region as *Hydrotaea gandakiana* Shinonaga, 1994 described from Nepal, with several remarkable modifications of hind leg which make this species easily recognizable. Later on we used the key for Chinese *Hydrotaea* [Xue et al., 2007] and came to *Hydrotaea unispinosa* Stein, 1898, but this species was described from the Nearctic region [Stein, 1898]. In present paper we tried to clarify the situation.

MATERIAL AND METHODS. The specimens listed are in the Zoological Museum of Moscow University (not indicated in text) or in the Museum für Naturkunde, Humboldt-Universität zu Berlin, Germany (ZMHU).

Localities are given as follows: country, region, geographical coordinates in the Decimal Degrees format.

The following generally accepted abbreviations for morphological structures are used: f_1, t_1, f_2, t_2, f_3, t_3 = fore-, mid-, hind- femur or tibia respectively; ac = acrostichal setae; dc = dorsocentral setae; a, p, d, v = anterior, posterior, dorsal, ventral seta(s).

Hydrotaea unispinosa Stein, 1898

Figs 1–6.

Hydrotaea unispinosa Stein, 1898: 165. Type locality: Canada, Ontario and USA, Colorado.

Hydrotaea silva Hsue, 1976: 109, syn.n. Type locality: China, Luming prov., Yingbo-Shan [40.7°N 123.1°E].

Hydrotaea calcarata Loew, 1858: Xue, Chao, 1998: 894 & Fig. 2063G, misidentification.

Hydrotaea silva Hsue, 1976 [1978 in author’s text]: 109 in author’s text]

Descriptive Notes. Male: black species, body length 5 mm (Fig. 1).
Head. Eyes almost bare, with sparse and short hairs. Fronto-orbital plates touch in middle. Fronto-orbital plates, interfrontalia, parafacials, gena and occiput matt black. Fronto-orbital plates shining in lower third, with about 9 pairs of inclinate setae in lower half. Antenna black, arista with longest hairs 1.5x longer than basal diameter of arista. Palpi black.

Thorax entirely shining black, densely covered with long ground setulae. Chaetotaxy: 0+1 ac; 2+4 dc; katepisternal 1+1, meron bare, katepimeron with 4-5 rather strong setulae (Fig. 3); notopleuron hairy. Wing clear, calypters yellow, haltere black.

Legs. f1 with two typical ventral hooks at apex. t1 emarginate on ventral surface in basal half; in apical half with a row of 2–4 fine pv setae and several elongated hairs (Fig. 5). f2: p surface with a complete row of setulae; a surface with a row of setulae in basal half and with 4–5 setulae at apex; v surface with 4–5 spines in basal half, the penultimate spine the strongest; pv surface in basal half with 4–5 weaker spines. t2 with 2 strong p setae and with a complete and dense row of elongated a hairs (like that in Hydrotaea dentipes). f3 with 3–4 av near apex and with thin and straight ventral spine slightly apicad middle. t3 with apically curved ventral spur below middle consisting of 5–6 setulae; with 1–3 fine downcurved av setulae below spur; with a dense row of elongated ad setulae in basal 2/3 (Figs 1,4,6). Tarsi not modified.

Abdomen black, grey dusted with black median vitta on tergites 3–4.
Female differs from male as follows. Frons wide, with interfrontal setae, a pair of proclinate and 2 pairs of reclinate orbital setae. Fronto-orbital plates and upper half of parafacial setae shining. Thoracic ground setae shorter, prst ac in 5–6 irregular rows. Calypters white. Legs without modifications: f1 without hooks at apex; t1 without emargination and fine pv near apex; f2 without ventral spines and p row of setae, but a setae in basal half and 1–2 at apex are present; t2 without dense a hairs; f3 without v spine; t3 without ventral spur, with 1 av and 1 ad below middle. Abdomen evenly subshining black.

Diagnosis of female. The identification of females of Hydrotaea is problematic except several cases. H. unispinosa is one of such lucky cases due to the presence of 2(1–4) rather strong and easily visible setulae on the katepimeron. Additional characters: the fronto-orbital plates and upper half of parafacial setae glossy; ac hairs in about 6 rows; arista pubescent.

Discussion

The modified hind leg (Figs 1, 4, 6) make identification of males of H. unispinosa rather easy except one difficulty. In the key for Chinese Hydrotaea [Xue et al., 2007] H. unispinosa was found to have the katepimeron hairy and all our specimens from India, Thailand and Vietnam also have the katepimeron with 2–5 distinct setulae. But the setulae on the katepimeron were not mentioned neither in Stein’s [1898] description of H. unispinosa nor in Shinonaga’s [Shinonaga, Singh, 1994] description of H. gandakiana. Besides records of the Nearctic H. unispinosa from the Oriental region also seemed doubtful. Fortunately, we had a possibility to examine in ZMHU an American specimen collected in USA, WA, Mt. Constitution and identified as H. unispinosa by Paul Stein himself (Fig. 2). This male was found similar to our ZMUM material in all characters including the setulae on katepimeron. Thus, the setulae on katepimeron were most probably just missed in Stein’s and Shinonaga’s descriptions and H. unispinosa Stein, 1898 = Hydrotaea gandakiana Shinonaga, 1994, syn.n. The taxon was described one more time as Hydrotaea silva Hsuw, 1976, this time even the setulae on katepimeron were most probably just missed in Stein’s and Shinonaga’s descriptions and H. unispinosa Stein, 1898 = Hydrotaea gandakiana Shinonaga, 1994, syn.n. The taxon was described one more time as Hydrotaea silva Hsuw, 1976, this time even the setulae on katepimeron were mentioned (as “baret hairy”). Later [Xue, Chao, 1998] listed H. silva as a synonym of H. calcarata Loew, 1858. Shinonaga [2002] listed H. silva for Indonesia (Bali, 1000 m asl) without any taxonomical comments. In [Xue et al., 2007] H. unispinosa was for the first mentioned by Chinese authors as a species which differs from H. calcarata by presence of the ventral spine on f3 and the setulae on katepimeron (here Hsue W.-C. and Xue W.-Q. is the different Latin spellings of the same Chinese author name). In our opinion H. calcarata is a doubtful species with the type material lost. Anyway, according to the original description H. calcarata has densely hairy eyes, so H. silva is not its synonym, but H. unispinosa Stein, 1898 = Hydrotaea silva Hsuw, 1976, syn.n. This synonymy is important for clarification of the geographical distribution of H. unispinosa because the type locality of H. silva is Laoning province of China which is certainly in the Palaeartic region. Thus, H. unispinosa is distributed in 3 ecozones:

– Nearctic: Canada and USA from East to West between 40°N and 50°N;
– Oriental: foothills in the northern part of the ecozone: India; Uttarakhand and West Bengal; Nepal; Thailand, Chiang Mai; Vietnam, Lai Chau. Also probably Indonesia, Bali.
– E Palaeartic: China, Laoning.

Such a distribution is rather unusual but not unique, for example, Hydrotaea armipes Fallén, 1825 also has a Nearctic, Palaeartic and North Oriental distribution.

ACKNOWLEDGEMENTS. We thank Joachim Ziegler (Berlin) for the important material from ZMHU. We want to express our thanks to Oleg Kosterin (Novosibirsk) and Dmitry Gavryushin (Moscow) for help and corrections of the text. Work of I. Gomyranov was partially supported by RFBR, research project No.13-04-01638 a.

References