Species of genus *Martes* in the Southern Urals and Trans-Urals during the Holocene

Anton V. Kisagulov*, Pavel A. Kosintsev & Dmitriy O. Gimranov

ABSTRACT. The study of the morphotypes of the crowns of the buccal teeth of three species of the genus *Martes* made it possible to trace the formation of modern ranges of pine marten *M. martes*, stone marten *M. foina* and sable *M. zibellina* during the second half of the Holocene. The pine marten range did not undergo any significant changes during the second half of the Holocene and included both Southern Urals and Trans-Urals. In the South Urals in the beginning and middle of the Late Holocene, the ranges of sable, stone marten and pine marten were overlapped. At the end of the late Holocene the sable range was shifted to the north, and the range of stone marten to the south-west, and in 18th century, only the pine marten inhabits the Southern Urals. In the second half of the Holocene until the 18th century, the Southern Trans-Urals were inhabited by only two species of the genus *Martes* — sable and pine marten, their ranges were sympatric. Modern boundaries of the ranges of sable, stone marten and pine marten in the Southern Urals and in the Southern Trans-Urals have been formed over the last 300 years.

KEY WORDS: *Martes*, morphotypes teeth, diagnosis of species, range, Holocene, Southern Ural.

* Corresponding author

© RUSSIAN JOURNAL OF THERIOLOGY, 2017

Russian J. Theriol. 16(2): 139–148

Introduction

The fossil bones are used to understand the evolutionary history of extinct and living species, which require precise species discrimination. Ideally, species identification implies DNA analysis of the bones. Though, due to different reasons DNA analysis is not always possible and morphological identification of fossil remains is still an important method. However, there are certain taxa which include closely related species that can be difficult to discriminate. The genus *Martes* is one of those taxa. There are four marten species in Northern Eurasia: *Martes foina* (Erxleben, 1777), *M. martes* (L., 1758), *M. melampus* (Wagner, 1840) and *M. zibellina* (L., 1758) (see Aristov & Baryshnikov, 2001). Their ranges partially overlapped in...
the past (Kosintsev & Gasilin, 2011; Gasilin et al., 2013). The same is observed in the present time (Heptner et al., 1967; Nasimovich, 1973). Correct species identification becomes essential for whose closely related species which ranges are sympatric. The postcranial skeletal elements of marten species are morphologically similar which makes their species identification rather difficult (Ambros & Hilpert, 2005). Diagnostic features of the skull are often used for species identification (Altuna, 1973; Smirnov, 1975; Gerasimov, 1985; Aristov & Baryshnikov, 2001; Loy et al., 2004; Monakhov, 2008, 2012; Ranyuk & Monakhov, 2011, 2015), but in fossil material complete skulls are rare and bone fragments and isolated teeth are more common. Tooth morphotypes and their variability also can be used for discrimination between marten species (Miller, 1912; Ognev, 1931; Pavlinin, 1963; Wolsan et al., 1985, 1989; Gasilin & Kosintsev, 2013; Gimranov & Kosintsev, 2015).

The marten remains from the Holocene archaeological sites in the Baltic region (Paaver, 1965), the Middle Urals (Gasilin et al., 2014), the Southern Urals (Gasilin & Gimranov, 2010; Gimranov & Kosintsev, 2015) and south-east of Western Siberia (Devyashin et al., 2016) have been thoroughly studied in the past years. These data show that marten species inhabited the Southern Urals since the Late Pleistocene (Kosintsev & Bachura, 2013). Remains of all three species (pine marten, stone marten, and sable) were found in the Holocene sites (Gimranov & Kosintsev, 2015; Kosintsev et al., 2016). In the last three centuries only the pine marten inhabits the Southern Urals (Kirikov, 1959, 1960, 1966). Not all previously studied the remains of the genus *Martes* with the South Urals were the exact dating. Therefore, it was not clear when the stone marten lived in the Southern Urals and when the sable disappeared from this territory. In the Southern Trans-Urals, in the 18th century, there were two species — pine marten and sable (Kirikov, 1959, 1966), and now lives only the pine marten (Aristov & Baryshnikov, 2001). The marten remains from the Southern Trans-Urals have not been studied previously. Therefore, it is not known when the sympatric range of these species appeared in the Trans-Urals and whether the stone marten penetrated into its territory. In this paper we examined teeth of marten species from the Holocene archaeological sites in the Southern Urals and Trans-Urals and reconstructed the history of their modern ranges. The purpose of our study was to study the history of the formation of modern ranges of species of the genus *Martes* in the Southern Urals and Southern Trans-Urals. To do this, a specific diagnosis of teeth from the Holocene sites was carried out.

Material and methods

The studied region includes Southern Urals and Southern Trans-Urals. It includes the territory from the Miass River in the north to the confluence of the Or’ River in the Ural River in the south; from the western
slope of the Ural Mountains to the Tobol River in the east. The fossil remains are stored at the Museum of the Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences (Yekaterinburg). The data on sable, pine and stone marten distribution during the last centuries were taken from published sources (Pallas, 1786, 1788; Kirikov, 1959, 1966). Subfossil marten remains were collected from 12 archaeological sites situated in the Southern Urals and Trans-Urals (Fig. 1). Total 431 subfossil teeth were studied. All sites were dated on the basis of archaeological artifacts, except the Mergen 6 site which have two radiocarbon dates. All sites were assigned to chronological periods of the Holocene (Khotinsky et al., 1991):

- Atlantic (AT, 8.4–6.0 kyr BP) — 1 site, 69 teeth;
- Subboreal (SB, 6.0–2.6 kyr BP) — 2 sites, 5 teeth;
- Beginning of the Sub-Atlantic (SA1, 2.6–1.8 kyr BP) — 5 sites, 226 teeth;
- Middle of the Sub-Atlantic period (SA2, 1.8–0.8 kyr BP) — 4 sites, 131 teeth.

We studied samples of recent skulls and lower mandibles of three marten species. Regions and the number of the studied specimens of the stone marten are as follows: Western Europe (n = 6), Eastern Europe (n = 23), the Caucasus (n = 60), Central Asia (n = 23), specimens from unknown regions (n = 8). The sample contains 120 specimens. Regions and the number of the studied specimens of the pine marten are: Eastern Europe (n = 430), the Urals (n = 420), the Caucasus (n = 140). The sample contains 990 specimens. The studied specimens of the sable are derived from the Urals (n = 360), Siberia (n = 310), Kamchatka (n = 100), the Far East of Russia (n = 70). The sample contains 840 specimens. The recent specimens are stored at the collections of the Zoological Museum of the Moscow State University (Moscow), the Zoological Institute, Russian Academy of Sciences (Saint Petersburg), and the Museum of the Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences (Yekaterinburg).

Only permanent teeth from the adult specimens without any crown defects were analyzed. There are no significant differences in the frequencies of m1 morphotypes between males and females in modern M. martes, M. foina, and M. zibellina ($\chi^2=1.1$, $p<0.01$; $\chi^2=0.45$, $p=0.01$; $\chi^2=3.88$, $p=0.01$ respectively). Therefore, we did not separate male and female specimens in the subfossil samples. In our work we took into account only teeth with diagnostic features (Gimranov & Kosintsev, 2015).

Description of morphotypes

Dental morphotypes were described according to previously published scheme (Gimranov & Kosintsev, 2015) (Fig. 2). Also we distinguished a new group of morphotypes for m1 which characterized by the degree of metaconid development (Fig. 2). We examined the frequency of four new m1 morphotypes in modern samples of M. foina (n=125), M. martes (n=595), and M. zibellina (n=614). Frequencies of m1 metaconid morphotypes in modern samples of different marten species are given in Table 1. The morphotype a1 appears exclusively in the sable which could be used for distinguishing the sable from the pine marten, and, probably, from the stone marten, even if only one tooth is available for examination. It is important when fossil material is scarce and fragmented. Frequencies of a2 and a3 morphotypes in modern sable are higher (16% and 52% respectively) than those in the stone marten (6% and 14% respectively) and pine marten (5% and 36% respectively). The morphotype a4 are more frequent in the stone (80%) and pine marten (59%), and less frequent in the sable (only 29%).

Morphotypes of all teeth are denoted by uppercase Latin letters (Fig. 2). For m1, two groups of morphotypes are distinguished on different parts of the tooth (metaconid and talonid), the correlation between which has not been studied. Therefore, in order to show the isolation of the morphotypes of different parts of m1, the talonid morphotypes are denoted by uppercase Latin letters, and the morphotypes of the metaconid by lowercase Latin letters. Morphotypes of other teeth are indicated in uppercase Latin letters (Fig. 2).

Morphotypes P3 are characterized by lingual convexity of the crown base (Fig. 2):

- A1 — no lingual bulge;
- A2 — small lingual bulge;
- A3 — noticeable lingual bulge.

Morphotypes P4 are distinguished by configuration of the tooth buccal side, position of the protocone, and the number of cones on the protocone:

- A1 — a concave between the protocone and para- style; the protocone is anterior to para-style; concave buccal outline;

<table>
<thead>
<tr>
<th>Species</th>
<th>Morphotype</th>
<th>a1</th>
<th>%</th>
<th>a2</th>
<th>%</th>
<th>a3</th>
<th>%</th>
<th>a4</th>
<th>%</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. foina</td>
<td>--</td>
<td>8</td>
<td>6</td>
<td>17</td>
<td>14</td>
<td>100</td>
<td>80</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. martes</td>
<td>--</td>
<td>28</td>
<td>5</td>
<td>215</td>
<td>36</td>
<td>352</td>
<td>59</td>
<td>595</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. zibellina</td>
<td>17</td>
<td>3</td>
<td>100</td>
<td>16</td>
<td>322</td>
<td>52</td>
<td>175</td>
<td>29</td>
<td>614</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Frequencies of m1 metaconid morphotypes in modern samples of marten species.
Fig. 2. Teeth morphotypes in *M. foina, M. martes* and *M. zibellina.*
A2 — a concave between the protocone and para-
style; non extends beyond protocone; concave buccal
outline;
A3 — a concave between the protocone and para-
style; the protocone is anterior to paraestyle; no buccal
cavity;
A4 — a concave between the protocone and para-
style; non extends beyond protocone; no buccal con-
cavity;
B1 — no concave between the protocone and para-
style; the protocone is noticeably anterior to paraestyle;
no buccal concavity;
B2 — undeveloped protocone; concave buccal out-
line. C — two-cusped protocone; concave buccal out-
line; the protocone is anterior to paraestyle.

Morphotypes of the M1 are defined by several pat-
terns, such as the shape of the crown on its lingual and
buccal sides, the presence or absence of cusps on the
occlusal surface, and the crest complexity:
A1 — rounded lingual and buccal outline; is present
protocone and protoconule;
A2 — straight lingual and rounded buccal outline; is
present protocone and protoconule;
A3 — heart shaped lingual and rounded buccal
outline; is present protocone and protoconule;
B1 — rounded lingual outline; the posterior contour
of the crown shows a distinct V-shaped indentation in
occlusal view; is present protocone and protoconule;
B2 — straight lingual outline; the posteroconulid
contour of the crown shows a distinct V-shaped inden-
tation in occlusal view; is present protocone and proto-
conule;
B3 — rounded lingual outline; the posteroconulid
contour of the crown shows a distinct V-shaped inden-
tation in occlusal view; is present protocone, proto-
conule and metaconule;
B4 — rounded lingual outline; the posteroconulid
contour of the crown shows a distinct V-shaped inden-
tation in occlusal view; no paraconule; the protocone
forms a massive bulge;
C1 — rounded lingual and buccal outline; is present
protocone, protoconule and metaconule;
C2 — straight lingual and rounded buccal outline; is
present protocone, protoconule and metaconule;
C3 — straight lingual and rounded buccal outline; is
present protocone, protoconule and metaconule; meta-
conule have two-cusped;
C4 — straight lingual outline; the posteroconulid
contour of the crown is slightly concave; is present
protocone, protoconule and metaconule, metaconule
have two-cusped;
D1 — straight lingual and rounded buccal outline;
is present protocone and protoconule; the hypocone is
present;
D2 — straight lingual and rounded buccal outline;
is present protocone, protoconule and metaconule; the
hypocone is present;
D3 — straight lingual and rounded buccal outline;
is present protocone and protoconule; the hypocone
and two-cusped metaconule are present;
D4 — straight lingual outline: the posteroconulid
contour of the cingulum is slightly concave is present
protocone and protoconule, the hypocone and two-
cusped metaconule are present;
E — straight lingual outline: the posteroconulid
contour of the cingulum is slightly concave; is present
protocone and protoconule, between is an additional
small cusp.

Morphotypes of the p3 are distinguished by the
degree of an additional cusp development on the proto-
conid distal crest:
A1 — posterior accessory cusp is absent;
A2 — small posterior accessory cusp is present;
A3 — a well-developed posterior accessory cusp is
present.

The identification of morphotypes of the D4 is based
on the degree of a cusp development on the protoconulid
distal crest and on the presence of an additional cusp on
the lingual side of the tooth:
A1 — posterior accessory cusp is absent;
A2 — the posterior accessory cusp has highest posi-
tion;
A3 — the posterior accessory cusp has lower posi-
tion;
B — the posterior accessory cusp has highest posi-
tion an additional lingual cusp is present.

In m1, differences are based on the talonid occlusal
surface. The morphotypes were differentiated on the
basis of the hypoconid robustness and the presence, as
well as relative position of additional cusps on the
talonid:
A1 — the distinct massive hypoconid occupies ap-
proximately a half of the talonid basin;
A2 — the hypoconulid is present to the massive
hypoconid;
A1 — a small-sized hypoconid;
A2 — the hypoconulid is present to the hypoconid;
A3 — two-cusped hypoconulid is present;
B1 — an additional cusp at the inner edge of the
hypoconid; hypoconid small-sized;
C2 — the hypoconulid is present; an additional cusp
at the inner edge of the hypoconid; hypoconid small-
sized;
D1 — the hypoconid is similar in size to those in
groups B and C; the entoconid is present;
D2 — the hypoconulid and entoconid are both
present; hypoconid small-sized.

Also we distinguished a new group of morphotypes
for m1 which characterized by the degree of metaconid
development:
a1 — the metaconid is crest-like; there is no notch
between protoconid and metaconid;
The number of specimens in subfossil sample is rather small \((n = 30)\), though high frequency of morphotype \(A2\) indicates the presence of the sable teeth. The distribution of \(P3\), \(I1\), \(i3\), \(p3\) and \(m1\) morphotypes is more typical for the pine marten and the sable than for the stone marten. We can conclude that in the beginning of the Late Holocene three marten species — pine marten, stone marten and sable — inhabited the Southern Urals.

Four archaeological sites (Kalinovskaya, Staroe logovo, Barsuchy Dol and Tashmurun (SA2)) are dated to the mid-Sub-Atlantic period. Number of teeth from these sites is small which makes reliable species identification rather difficult. No morphotype \(a1\) on \(m1\) that are species-specific for the sable was identified (Table 2). Though, recently published data suggest that stone marten still lived in the area during SA2. The mandible from Kalinovskaya cave was attributed to the stone marten based on morphometric analysis (Gasilin & Kosintsev, 2013).

The pine marten’s range did not have major changes during historical times — the species lived in the Southern Urals and Trans-Urals till the present (Kirikov, 1959, 1966; Devyashin et al., 2016). The sable inhabited the Southern Trans-Urals in the XVII and XVIII centuries, but became extinct at the beginning of XX century (Pallas, 1786; 1788; Kirikov, 1959; 1966). In the Southern Urals sable became extinct before the historical times. No evidence of stone marten occurrence is available for the Southern Urals and Trans-Urals over the last centuries (Kirikov, 1959; 1966).

Conclusion

The study of the morphotypes of the crowns of the buccal teeth of three species of the genus *Martes* made it possible to trace the formation of modern ranges of pine marten, stone marten and sable during the second half of the Holocene. The pine marten range did not undergo any significant changes during the second half of the Holocene and included both Southern Urals and Trans-Urals. In the South Urals, sable and stone marten are found in the sites of the first half of the Late Holocene. At this time, the southern boundary of the
Table 2. Distribution of the teeth morphotypes in samples from the Holocene localities: 1 — Mergen 6, 2 — Balandino, 3 — Yukalikulevo, 4 — Tashmurun (SA1), 5 — Tashmurun (SA2), 6 — Serny kluch, 7 — Podpornaya, 8 — Kalinovskaya, 9 — Atysh, 10 — Berezki Vv, 11 — Staroe logovo, 12 — Barsuchy Dol.

<table>
<thead>
<tr>
<th>Tooth</th>
<th>Morphotype</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>P3</td>
<td>A1</td>
<td>1 1</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>1 3 1 5</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>8 1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1 0 0 0 1 0 4 2 13 0 1 0</td>
</tr>
<tr>
<td>P4</td>
<td>A1</td>
<td>1 1</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>1 1 2 2</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>7 1</td>
</tr>
<tr>
<td></td>
<td>A4</td>
<td>3 1</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>0 0 2 0 2 0 0 3 22 0 1 1</td>
</tr>
<tr>
<td>M1</td>
<td>A1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>1 1 5 9</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>2 1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>0 0 2 0 1 0 0 5 13 0 1 1</td>
</tr>
<tr>
<td>i3</td>
<td>A2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>1</td>
</tr>
<tr>
<td>p3</td>
<td>A1</td>
<td>15 4 20 3 7 25</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>6 1 6 2 1 5 1</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>21 0 0 5 26 5 9 30 0 1</td>
</tr>
<tr>
<td>p4</td>
<td>A1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td>14 1</td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td>6 7 19 1 7 6 1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>23 1 0 7 19 1 7 11 30 1 1 0</td>
</tr>
<tr>
<td>m1*</td>
<td>A2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td>15 6 18 1 7 27 1</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>7 1 3 6 4 16 2</td>
</tr>
<tr>
<td></td>
<td>B3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>1 2</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>2 1 2</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>23 0 0 7 23 0 10 14 48 0 1 1</td>
</tr>
<tr>
<td>m1**</td>
<td>a1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>a3</td>
<td>6 4 1 6 3 1</td>
</tr>
<tr>
<td></td>
<td>a4</td>
<td>16 15 8 7 47 1</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>23 0 0 0 19 0 9 14 50 0 1 1</td>
</tr>
</tbody>
</table>
Table 2 (continued).

<table>
<thead>
<tr>
<th>Tooth</th>
<th>Morphotype</th>
<th>Locality</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>m2</td>
<td>A1</td>
<td></td>
<td>2</td>
<td>6</td>
<td></td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>2</td>
<td>6</td>
<td></td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>78</td>
<td>1</td>
<td>28</td>
<td>44</td>
<td>175</td>
<td>1</td>
</tr>
<tr>
<td>Number of specimens</td>
<td></td>
<td></td>
<td>69</td>
<td>1</td>
<td>4</td>
<td>21</td>
<td>78</td>
<td>1</td>
<td>28</td>
<td>44</td>
<td>175</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

* — talonid morphotypes on m1 (previously described);
** — metaconid morphotypes on m1 (new morphotypes).

Table 3. Frequency (%) of diagnostic morphotypes on the marten teeth in modern samples and Holocene localities from Southern Urals and Trans-Urals.

<table>
<thead>
<tr>
<th>Tooth</th>
<th>Morphotype</th>
<th>Species*</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4</td>
<td>A1</td>
<td></td>
<td>40</td>
<td>58</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A2</td>
<td></td>
<td>24</td>
<td>24</td>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A3</td>
<td></td>
<td>9</td>
<td>10</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A4</td>
<td></td>
<td>2</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>B1</td>
<td></td>
<td>3</td>
<td>2</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td></td>
<td>5</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td></td>
<td>15</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td></td>
<td>530</td>
<td>660</td>
<td>120</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P4	A1		2	3	4	13								
	A2		67	6	1	61								83
	A3		25	90	95	26								3
	B		6	1	0									
n			530	660	120	23	0	30						

m1	A1		0	0	55	0	0	0	0	0	0			
	A2		0	0	40	0	10	0						
	B1		5	24	1	65	10	56						
	B2		44	67	4	30	60	33						
	B3		2	0	0	0	0	0	0					4
	C1		2	1	0		4	0	2					
	C2		45	88	0	0	20	4						
	D1		1	0	0	0	0	0	0					
	D2		1	0	0	0	0	0	0					
n			530	660	120	23	10	48						

* Recent samples: 1 — M. zibellina, 2 — M. martes, 3 — M. foina.
**Holocene localities: 4 — Mergen 6; 5 — Podpornaya, 6 — Atysh.
sable passed here south 55°N. The northeastern border of the area of the stone marten reached 54°N, 56°E. Thus, in this part of the Southern Urals in the first half of the Late Holocene, the ranges of sable, stone marten and pine marten were overlapped. At the end of the late Holocene the sable range was shifted to the north, and the range of stone marten to the south-west. Since the 18th century, only the pine marten inhabits the Southern Urals (Kirikov, 1959, 1960, 1966).

In the Southern Trans-Urals in the second half of the Holocene, the southern boundary of the sable area was south of 56°N. In this area in the second half of the Holocene, the ranges of sable and pine marten were overlapped. The finds of the stone marten for this territory are not known. Thus, in the second half of the Holocene until the 18th century, the Southern Trans-Urals were inhabited by only two species of the genus Martes — sable and pine marten, their ranges were sympatric. Modern boundaries of the ranges of these species in the Southern Urals and in the Southern Trans-Urals have been formed over the last 300 years.

ACKNOWLEDGMENTS. The authors would like to thank G.F. Baryshnikov and M.V. Sablin (Zoological Institute, Russian Academy of Sciences), V.S. Lebedev (Zoological Museum of the Moscow State University), N.G. Erokhin and T.P. Kourova (Museum of the Institute of Plant and Animal Ecology, Russian Academy of Sciences) for giving access to the museum collections. The study of archaeological collections was conducted under the RSF project No.16-34-00364 mol-a and the Federal Agency for Scientific Organizations program for support the project No.16-18-10332 and RFBR research collections. The reported study was funded by RSF Academy of Sciences) for giving access to the museum collections.

REFERENCES

Gasilin V.V. & Gimranov D.O. 2010. [The species composition of the genus Martes in the Southern Urals in the Holocene] // Dinamika sovremennyykh ekosistem v go-

Khotinskii N.A., Aleshinskaya Z.V., Guman M.A., Kli-

Kirikov S.V. 1959. [Changes of the fauna in natural zones of the Soviet Union: the forest–steppe]. Moscow: Akademiya nauk SSSR. 175 p. [In Russian]

Kirikov S.V. 1960. [Changes of the of the fauna in natural zones of the Soviet Union: the forest zone and forest–tundra]. Moscow: Akademiya nauk SSSR. 158 p. [In Russian]

Kirikov S.V. 1966. [Harvested animals, natural environment, and the man]. Moscow: Nauka. 348 p. [In Russian]

Paaver K.L. 1965. [Formation of theriofauna and variation of mammals in the Baltic Region during the Holocene]. Tartu: Izdatel’stvo Akademii nauk Estonskoi SSR. 494 p. [In Russian]

