Literature Cited |
Aldous, A.R. 2002. Nitrogen translocation in Sphagnum mosses: effects of atmospheric nitrogen deposition. New Phytologist 156(2), 241-253.Google Scholar, Crossref
|
Banbury,G.Y. 1962. . Geotropism of lower plants. In: Handbuch der Pflanzenphysiologie. Ed. by W.Ruhland et al. Band XVII, Teil 2. Berlin-Gottingen-Heidelberg: Springer-Verlag: 344–377.Google Scholar
|
[Begak, D.O.] Бегак Д.О. 1927. О приросте торфяников. [On the peatlands growth] Торфяное дело [Torfyanoe delo] 11-12: 300–306.Google Scholar
|
Berg, A., Е. Danielsson & B.H. Svensson. 2013. Transfer of fixed-N from N2-fixing cyanobacteria associated with the moss Sphagnum riparium results in enhanced growth of the moss. Plant and Soil 362 (1): 271-278.Google Scholar, Crossref
|
Bismarck, R. Von. 1959. Über den Geotropismus der Sphagnen. Flora (Jena) 148: 23–83.Google Scholar
|
[Bondarik,N.L.] Бондарик Н.Л. 2004. . Динамика стокообразующих факторов. [Dynamics of discharge forming factors] В кн: Климат Карелии: изменчивость и влияние на водные объекты и водосборы (отв. ред. Филатов, Н.Н.) Петрозаводск, КарНЦ РАН. [in Filatov, N.N. Climate of Karelia: variability and influence on water objects and watersheds, Petrozavodsk, KarRC RAS]: 34–54.Google Scholar
|
Camill, P., J.A. Lynch, J.S. Clark, J.B. Adams & B. Jordan. 2001. Changes in biomass, aboveground net primary production, and peat accumulation following permafrost thaw in the boreal peatlands of Manitoba, Canada. Ecosystems 4(5): 461–478.Google Scholar
|
Clymo, R.S. 1970. The growth of Sphagnum: methods of measurement. Journal of Ecology. 58: 13–49.Google Scholar, www
|
[Elina, G.A., O.L. Kuznetsov & A.I. Maksimov] Елина Г.А., О.Л. Кузнецов, А.И. Максимов. 1984. Структурно-функциональная организация и динамика болотных экосистем Карелии. [Structure-functional organization and dynamics of mire ecosystems in Karelia] Л., Наука [Leningrad, Nauka]: 128 pp.Google Scholar
|
Eurola, S. 1975. Snow and ground frost conditions of some Finnish mire types. Annales Botanici Fennici 12: 1–16.Google Scholar, www
|
[Grabovik, S.I.] Грабовик С.И. 1994. Влияние климатических условий на линейный прирост сфагновых мхов южной Карелии. [The effect of climatic conditions on the annual increment of Sphagna in Southern Karelia] Бот. Журн. [Bot. Zhurn.] 79 (4): 81–86.Google Scholar, www
|
[Grabovik, S.I. & O.L. Kuznetsov] Грабовик С.И., Кузнецов О.Л. 2016. Рост и продуктивность ценопопуляций сфагновых мхов на естественных и трансформированных болотах Карелии. [Growth and productivity of cenopopulationsof Sphagnum mosses in natural and transformed mires of Karelia] Труды Карельского научного центра РАН. Серия Экологические исследования [Transactions of the Karelian Research Centre of the Russian Academy of Sciences. Ecological studies series] 4: 59–69.Google Scholar
|
Grabovik, S.I. & L.E. Nazarova. 2013. Linear increment of Sphagnum mosses on Karelian mires (Russia). Arctoa 22: 23–26.Google Scholar, Crossref
|
Graham, J.A. & D.H. Vitt. 2016. The limiting roles of nitrogen and moisture on Sphagnum angustifolium growth over a depth to water table gradient. Plant and Soil 404(1): 427–439.Google Scholar, Crossref
|
Ho, A. & P.L. Bodelier. 2015. Diazotrophic methanotrophs in peatlands: the missing link? Plant and Soil 389(2): 419–423.Google Scholar, Crossref
|
Hulme, P.D. & A.W. Blyth. 1982. The annual growth period of some Sphagnum species on the Silver Flowe National Nature Reserve, south-west Scotland. Journal of Bryology 12(2): 287–291.Google Scholar, Crossref
|
[Ivanter, E.V. & A.V. Korosov] Ивантер Э.В., А.В. Коросов. 2003. Введение в количественную биологию. [Introduction in quantitative biology] Петрозаводск. Петрозаводский государственный университет [Petrozavodsk, Petrozavodskij gosudarstvennii universitet]: 302 pp.Google Scholar
|
[Ilomets, M.A.] Илометс М.А. 1976. Продуктивность сфагнового покрова на примере Гусиного болота. [Productivity of Sphagna cover on Gusinoe mire model] Труды Печеро-Илычского государственного заповедника [Trudy Pechero-Ilychskogo gosudarstveogo zapovednika] 13: 40–57.Google Scholar
|
Jauhiainen, J., J. Silvola, K. Tolonen & H. Vasander. 1997. Response of Sphagnum fuscum to water levels and CO2 concentration. Journal of Bryology, 19(3): 391–400.Google Scholar, Crossref
|
Lindholm, T. & H. Vasander. 1990. Production of eight special of Sphagnum at Suurisuo mire southern Finland. Annales Botanici Fennici 27: 145–157.Google Scholar, www
|
Malmer, N. 1962. Studies on mire vegetation in the Archean area of southwestern Gotaland (South Sweden) II. Distribution and seasonal variation in elementary constituents on some mire sites. Opera botanica. 7(2): 1–67.Google Scholar
|
[Muldiyarov,E.Ya. & E.D. Lapshina] Мульдияров Е.Я., Е.Д. Лапшина. 1983. . Датировка верхних слоев торфяной залежи, используемой для изучения космических аэрозолей. [Dating of the top layer in peat deposit, using for cosmic aerosol research] В кн: Метеоритные и метеорные исследования, Новосибирск [In: Meteoritnye i meteornye issledovaniya, Novosibirsk ]: 75-84.Google Scholar
|
[Panov, V.V.] Панов В.В. 2008. Функциональная неоднородность деятельного слоя сфагновых болот. [Functional heterogeneity of acrotelm in mires] Вестник Томского государственного педагогического университета [Vestnik Tomskogo gosudarstvennogo pedagogicheskogo universiteta] 4: 21–26.Google Scholar
|
Pouliot, R., M. Marchand-Roy, L. Rochefort & G. Gauthier. 2010. Estimating moss growth in arctic conditions: a comparison of three methods. Bryologist 113 (2): 322–332.Google Scholar, Crossref
|
Raghoebarsing, A.A., A.J. Smolders, M.C. Schmid, W.I.C. Rijpstra, M. Wolters-Arts, J. Derksen, M.S.M. Jetten, S. Schouten, J.S.S. Damsté, L.P.M. Lamers, J.G.M. Roelofs, H.J.M. Op den Camp & M. Strous. 2005. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436(7054): 1153–1156.Google Scholar, Crossref
|
Rochefort, L., D.H. Vitt & S.E. Bayley. 1990. Growth, production, and decomposition dynamics of Sphagnum under natural and experimentally acidified conditions. Ecology 71(5):. 1986–2000.Google Scholar
|
Rydin, H. & R. S. Clymo. 1989. Transport of carbon and phosphorus compounds about Sphagnum. Proceedings of the Royal Society of London: Biological Sciences 237(1286): 63–84.Google Scholar
|
[Smolyanickij, L.Ya.] Смоляницкий Л.Я. 1977. Некоторые закономерности формирования дернины сфагновых мхов. [Some regularities of formation of Sphagnum moss turfs] Ботанический журнал [Botanicheskiy Zhurnal] 62 (9): 1262–1272.Google Scholar, www
|
[Solonevich, N.G.] Солоневич Н.Г. 1966. К биологии сфагновых мхов. [On the Sphagna biology] Ботанический журнал [Botanicheskiy Zhurnal] 51 (9): 1297–1302.Google Scholar, www
|
Sonesson, M., S. Persson, K. Basilier, & T.A. Stenström. 1980. Growth of Sphagnum riparium Еngstr. in relation to some environmental factors in the Stordalen mire. Ecological Bulletins 30: 191–207.Google Scholar, www
|
Turetsky, M.R., S.E. Crow, R.J. Evans, D.H. Vitt & R.K. Wieder. 2008. Trade-offs in resource allocation among moss species control decomposition in boreal peatlands. Journal of Ecology 96(6): 1297–1305.Google Scholar, Crossref
|
Vitt,D.H. 2007. . Estimating moss and lichen ground layer net primary production in tundra, peatlands and forests. s, New York: 82–105. In: Fahey, T.J. & A.K. Knapp (eds) Principles and Standards for Measuring Primary Production. Oxford University PresGoogle Scholar
|
Yazaki, T. & K. Yabe. 2012. Effects of snow-load and shading by vascular plants on the vertical growth of hummocks formed by Sphagnum papillosum in a mire of northern Japan. Plant Ecology 213: 1055–1067.Google Scholar, Crossref
|