Mosses from Rovno amber (Ukraine), 4. Sphagnum heinrichsii, a new moss species from Eocene
M. S. Ignatov, P. Lamkowski, E. A. Ignatova, E. E. Perkovsky

Literature Cited
Arnold,C.A. 1932. Microfossils from Greenland coal. Papers of the Michigan Academy of Science, Arts and Letters: 51–61.Google Scholar
Boulter,M., . 1994. An approach to a standard terminology for palynodebris. In: Traverse, A. (ed.), Sedimentation of Organic Particles. Cambridge, Cambridge University Press, pp. 199–216.Google Scholar
Caspary,R. & R. KLEBS. 1907. Die Flora des Bernsteins und anderer fossiler Harze des ostpreuЯischen Tertiдrs. Abhandlungen der PreuЯischen Geologischen Landesanstalt N.F. 4: 1–181. Berlin.Google Scholar
CardonaCorrea, C., M.J. Piotrowski, J.J. Knack, R.E. Kodner, D.H. Geary & L.E. Graham. 2016. Peat moss–l ike vegetative remains from Ordovician carbonates. International Journal of Plant Science, 177: 523–538. https://doi.org/10.1086/686242Google Scholar
Chang,Y., & S.W. Graham. 2011. Inferring the higher?order phylogeny of mosses (Bryophyta) and relatives using a large, multigene plastid data set. American Journal of Botany, 98: 839–849.Google Scholar, Crossref
Dlussky,G. M. & A. P. Rasnitsyn. 2009. Ants (Insecta: Vespida: Formicidae) in the Upper Eocene amber of Central and Eastern Europe. Paleontological Journal 43(9): 1024–1042.Google Scholar, Crossref
Frahm,J.-P. 2004. A new contribution to the moss flora of Baltic and Saxon amber. Review of Palaeobotany and Palynology 129: 81–101.Google Scholar, Crossref
Frahm,J.-P. 2009. The first record of a Sphagnum from the Tertiary in Baltic Amber and other new records of mosses from Baltic and Dominican amber. Cryptogamie Bryologie, 30: 259–263.Google Scholar
Frahm,J.-P. 2010. Die Laubmoosflora des Baltischen Bern­steinwaldes. Jena, Weissdorn Verlag, 101 pp.Google Scholar
Goeppert,H.R. 1853. Über die Bernsteinflora. Monatsberichte der Königlich Preußischen Akademie der Wissenschaften, Berlin: 450– 477.Google Scholar
Goeppert,H.R. & G.C. Berendt. 1845. Der Bernstein und die in ihm befindlichen Pflanzenreste der Vorwelt. Berlin.Google Scholar
Grolle,R. & K. Meister. 2004. The liverworts in Baltic and Bitterfeld amber. Jena, Weissdorn Verlag, 91 pp.Google Scholar
Ignatov,M.S. & E.E. Perkovsky. 2011. Mosses from Rovno amber (Ukraine). Arctoa 20: 1–18.Google Scholar, Crossref
Ignatov,M.S. & E.E. Perkovsky. 2013. Mosses from Rovno amber (Ukraine), 2. Arctoa 22: 83–92.Google Scholar, Crossref
Ignatov,M.S., A. Schäfer-Verwimp, E.E. Perkovsky & J. Heinrichs. 2016. Mosses from Rovno amber (Ukraine), 3. Pottiodicranum, a new moss genus from the Late Eocen Arctoa 25: 229–235Google Scholar, Crossref
Karlin,E.F., W.R. Buck, R.D. Seppelt, S.B. Boles & A.J. Shaw. 2013. The double allopolyploid Sphagnum ×falcatulum (Sphagnaceae) in Tierra del Fuego, a Holantarctic perspective. Journal of Bryology 35: 157–172.Google Scholar, Crossref
Karlin,E.F. & S.C. Robinson. 2017. Update on the Holantarctic Sphagnum ×falcatulum s.l. (Sphagnaceae) complex: S. irritans is associated with the allo-diploid plants. Journal of Bryology 39: 8–15.Google Scholar, Crossref
KONSTANTINOVA,N.A., M.S. IGNATOV & E.E. PERKOVSKY. 2012. Hepatics from Rovno amber (Ukraine). Arctoa 21: 265–271.Google Scholar, Crossref
Kuc,M., . 1973. Plant macrofossils in Tertiary coal and amber from northern Lake Hazen, Ellesmere Island, N.W.T. Papers from the Geological Survey of Canada, 73-1 (Part B): 143.Google Scholar
Laenen,B., B. Shaw, H. Schneider, B. Goffinet, É. Paradis, A. Désamoré, J. Heinrichs, J. C. Villarreal, S. R. Gradstein, S. F. McDaniel, D. G. Long, L. L. Forrest, M. L. Hollingsworth, B. J. Crandall-Stotler, E. C. Davis, J. Engel, M. von Konrat, E. D. Cooper, J. Patińo, C. J. Cox, A. Vanderpoorten & J. Shaw. 2014. Extant diversity of bryophytes emerged from successive post-Mesozoic diversification bursts. Nature Communications 5: 6134 [1–6].Google Scholar, Crossref
Laine,J., K. I. Flatberg, P. Harju, T. Timonen, K. Minkkinen, A. M. Laine, E.-S. Tuittila & H. Vasander. 2018. Sphagnum Mosses. Helsinki, University of Helsinki, Department of Forest Sciences. 326 pp.Google Scholar
LIEHMANN,G. 2013. Die maschinelle Gewinnung und Aufbereitung des Bernsteins im Tagebau Goitsche bei Bitterfeld ein Erlebnisbericht. Exkursionsführer und Veröffentlichungen der Deutschen Gesellschaft für Geowissenschaften 249: 24–30.Google Scholar
Liu,Y., M. Johnson, C. J. Cox, R. Medina, N. Devos, A. Vanderpoorten, L. Hedenäs, N. Bell, J. R. Shevock, B. Aguero, D. Quandt, N. Wickett, J. Shaw & B. Goffinet. 2019. Resolution of the ordinal phylogeny of mosses using targeted exons from organellar and nuclear genomes. Nature Communications, 10: 1485 [1–11].Google Scholar, Crossref
Mamontov,Yu.S., J.Heinrichs, A. Schдfer-Verwimp, M.S. Ignatov & E.E. Perkovsky. 2013. Hepatics from Rovno amber (Ukraine), 2. Acrolejeunea ucrainica sp. nov. Arctoa 22: 93–96.Google Scholar, Crossref
Mamontov,Yu.S., J.Heinrichs, A. Schдfer-Verwimp, M.S. Ignatov & E.E. Perkovsky. 2015. a. Hepatics from Rovno amber (Ukraine), 4. Frullania riclefgrollei, sp. nov. Revue Palaeobotany and Palynology, 223: 31–36.Google Scholar, Crossref
Mamontov,Yu.S., J.Hentschel, A. Schдfer-Verwimp, M.S. Ignatov & E.E. Perkovsky. 2015. b. Hepatics from Rovno Amber (Ukraine), 3. Anastrophyllum rovnoi sp. nov. Arctoa 24: 43–46.Google Scholar, Crossref
Mamontov,Yu.S., J.Heinrichs, N.A. KONSTANTINOVA, E.E. Perkovsky & M.S. Ignatov. 2017. Hepatics from Rovno amber (Ukraine), 6. Frullania rovnoi, sp. nov. Journal of Bryology 39: 336–341.Google Scholar, Crossref
Mamontov,Yu.S., M.S. IGNATOV & E.E. PERKOVSKY. 2018. Hepatics from Rovno amber (Ukraine), 7. Frullania zerovii, sp. nov., Nova Hedwigia, 106: 103–113.Google Scholar, Crossref
Nadein,K.S., E.E. Perkovsky & A.G. Moseyko. 2016. New Late Eocene Chrysomelidae (Insecta: Coleoptera) from Baltic, Rovno and Danish ambers. Papers in Palaeontology 2(1): 117–137.Google Scholar, Crossref
Newton,A. E., N. Wikström, N. Bell, L. L. Forrest & M. S. Ignatov. 2007. Dating the diversification of the pleurocarpous mosses. In: Newton, A. E. & R. S. Tangney (eds.), Pleurocarpous mosses: systematics and evolution. Systematic Association Special Volume 71: 337–366.Google Scholar
Perkovsky,E. E. 2011. Syninclusions of the Eocene winter ant Prenolepis henshei (Hymenoptera: Formicidae) and Germaraphis aphids (Hemiptera: Eriosomatidae) in Late Eocene Baltic and Rovno amber: some implications. Russian Entomological Journal 20(3): 303–313.Google Scholar, Crossref
Perkovsky,E.E. 2016. Tropical and holarctic ants in Late Eocene ambers. Vestnik zoologii 50(2): 111–122.Google Scholar, Crossref
Perkovsky, E. E. .2017. Rovno Amber Caddisflies (Insecta, Trichoptera) from Different Localities, with Information about three New Sites. Vestnik zoologii 51(1): 15–22.Google Scholar, Crossref
Perkovsky,E.E., A.P. Rasnitsyn, A.P. Vlaskin & M.V. Tatar­chuk. 2007. A comparative analysis of Baltic and Rovno amber arthro­pod faunas: perspective samples. African Invertebrates 48: 229–245.Google Scholar
Perkovsky,E.E., V.Yu. Zosimovich & A.P. Vlas­kin. 2003. Rovno amber insects: first results of analysis. Russian Entomological Journal 12(2): 119–126.Google Scholar
Perkovsky,E.E., V.Yu. Zosimovich & A.P. Vlaskin . 2010. Rovno amber. In: Penney, D. Biodiversity of fossils in amber from the major world deposits. Siri Sci. Press., Rochdale: 116–136.Google Scholar
Riegel,W. & V. Wilde. 2016. An early Eocene Sphagnum bog at Schöningen, northern Germany. International Journal of Coal Geology 159: 57–70.Google Scholar, Crossref
Reissinger,A. 1950. Die “Pollenanalyse” ausgedehnt auf alle Sedimentgesteine der geologischen Vergangenheit. Palaeontographica Abt. B 90 (4-6): 99–126.Google Scholar
Shaw,J., C. J. Cox, W. R. Buck, N. Devos, A. M. Buchanan, L. Cave, R. D. Seppelt, B. Shaw, J. Larraín, R. E. Andrus, J. Greilhuber & E. M. Temsch. 2010. a. Newly resolved relationships in an early land plant lineage: Bryophyta class Sphagnopsida (peat mosses). American Journal of Botany 97: 1511–1531.Google Scholar, Crossref
Shaw,J., N. Devos, C. J. Cox, S. B. Boles, B. Shaw, A. M. Buchanan, L. Cave & R. D. Seppelt. 2010. b. Peatmoss (Sphagnum) diversification associated with Miocene Northern Hemisphere climatic cooling? Molecular Phylogenetics and Evolution 55: 1139–1145.Google Scholar, Crossref
Shaw,J., B. E. Carter, B. Aguero, D. P. da Costa & A. A. Crowl. 2018. Range change evolution of peat mosses (Sphagnum) within and between climate zones. Global Change Biology 25(1): 108–120. https://doi.org/10.1111/gcb.14485Google Scholar
Tomescu,A.M.F., B. Bomfleur, A.C, Bippus & A.Savoretti. 2018. Why are bryophytes so rare in the fossil record? A spotlight on taphonomy and fossil preservation. Transformative Paleobotany. https://doi.org/10.1016/B978-0-12-813012-4.00016-4.Google Scholar
Wilson,L.R. & R.M. Webster. 1946. Plant microfossils from a Fort Union coal of Montana. American Journal of Botany 33: 271–278.Google Scholar, Crossref