Literature Cited |
BarbéM., é.E. Chavel, N.J. Fenton, L. Imbeau, M.J. Mazerolle, P. Drapeau, Y.Bergeron. 2016. Dispersal of bryophytes and ferns is facilitated by small mammals in the boreal forest Ecoscience 23(3-4): 67–76. DOI: 10.1080/11956860.2016.1235917.Google Scholar, Crossref
|
BROWNR.C., B.E. LEMMON, M. SHIMAMURA, J.C. VILLARREAL AGUILAR, K.S. RENZAGLIA. 2015. Spores of relictual bryophytes: diverse adaptations to life on land Review of Palaeobotany and Palynology 216: 1–17.Google Scholar
|
Carrión.J. S. M. J. Cano, J. Guerra. 1995. Spore morphology in the moss genus Pterygoneurum Jur. (Pottiaceae) Nova Hedwigia 61: 481–496.Google Scholar
|
ChmielewskiM.W., S.M. Eppley. 2019. Forest passerines as a novel dispersal vector of viable bryophyte propagules Proceeding of the Royal Society B, Biological Sciences 286(1897): 20182253. doi: 10.1098/rspb.2018.2253Google Scholar, Crossref
|
EstébanezB., T. Yamaguchi, H.Deguchi. 2006. Ultrastructure of the spore in four Japanese species of Ptychomitrium Fürnr. (Musci) Grana 45(1): 61–70. DOI: 10.1080/00173130600555722.Google Scholar, Crossref
|
FurnessS. B., R. H. Hall. 1981. An explanation of the intermittent occurrence of Physcomitrium sphaericum (Hedw.) Brid. Journal of Bryology 11: 733–742.Google Scholar
|
HedenäsL. 2012. Morphological and anatomical features associated with epiphytism among the pleurocarpous mosses—one basis for further researchon adaptations and their evolution.– Journal of Bryology 34: 79–100.Google Scholar
|
HortonD.G. 1983. A revision of the Encalyptaceae (Musci) with particular reference to the north American taxa Part II Journal of the Hattori Botanical Laboratory 54: 353–532.Google Scholar
|
IgnatovM.S., V.E. Fedosov, A.V. Fedorova, E.A. Ignatova. 2016. On the systematic position of Discelium (Bryophyta) Arctoa 25(2): 278–284.Google Scholar, Crossref
|
IgnatovM. S., E. A. Ignatova. 2001. On the zoochory of Schistostega pennata (Schistostegaceae, Musci) Arctoa 10: 83–96.Google Scholar, Crossref
|
IgnatovM.S. U.N. Spirina, M.A. Kolesnikova, D.A. Ashikhmina, E.A. Ignatova , S.V.Polevova. 2018. Peristome development pattern in Encalypta poses a problem: what is the primary peristomial layer in mosses? — Arctoa 27(1): 1–17. DOI: 10.15298/arctoa.25.01Google Scholar, Crossref
|
JohanssonV., N.Lönnell, S. Sundberg, K. Hylander. 2014. Release thresholds for moss spores: the importanceof turbulence and sporophyte length Journal of Ecology 102: 721–729. doi: 10.1111/1365-2745.12245Google Scholar, Crossref
|
KoponenA.K. 1990. Entomophily in the Splachnaceae Botanical Journal of the Linnean Society 104: 115–127.Google Scholar
|
KozubD., V. Khmelik, Yu. Shapoval, V. Chentsov, S. Yatsenko, B. Litovchenko, V. Starykh. 2008. Heicon Focus Software. Heicon Focus Software. http://www.heliconsoft.comGoogle Scholar
|
LewisL. R. R. Rozzi, B. Goffinet. 2014. Direct longdistance dispersal shapes a New World amphitropical disjunction in the dispersal-limited dung moss Tetraplodon (Bryopsida: Splachnaceae). Journal of Biogeography 41: 2385–2395. DOI:10.1111/jbi.12385Google Scholar, Crossref
|
MarinoP. 2009. The ecology and evolution of fly dispersed dung mosses (family Splachnaceae): manipulating insect behaviour through odour and visual cues Symbiosis 47: 61–76.Google Scholar
|
McCuaigB., S.C. Dufour, R.A. Raguso, A.P. Bhatt, P. Marino. 2015. Structural changes in plastids of developing Splachnum ampullaceum sporophytes and relationship to odour production Plant Biology (Stuttgart) 17(2): 466–473.Google Scholar
|
RenzagliaK.S., K.D. McFarland, D.K. Smith. 1997. Anatomy and ultrastructure of the sporophyte of Takakia ceratophylla (Bryophyta) American Journal of Botany 84: 1337–1350.Google Scholar
|
TryonA.F. B. Lugardon. 1991. Spores of the pteridophyta: surface, wall structure, and diversity based on electron microscope studies New York, Springer Verlag, 648 pp.Google Scholar
|