An attempt to create air sacs in spores? On the unusual spore structure in moss Encalypta longicollis
S. V. Polevova, A. V. Moiseenko, M. A. Kolesnikova, D. A. Ashikhmina, M. S. Ignatov

Literature Cited
BarbéM., é.E. Chavel, N.J. Fenton, L. Imbeau, M.J. Mazerolle, P. Drapeau, Y.Bergeron. 2016. Dispersal of bryophytes and ferns is facilitated by small mammals in the boreal forest Ecoscience 23(3-4): 67–76. DOI: 10.1080/11956860.2016.1235917.Google Scholar, Crossref
BROWNR.C., B.E. LEMMON, M. SHIMAMURA, J.C. VILLARREAL AGUILAR, K.S. RENZAGLIA. 2015. Spores of relictual bryophytes: diverse adaptations to life on land Review of Palaeobotany and Palynology 216: 1–17.Google Scholar
Carrión.J. S. M. J. Cano, J. Guerra. 1995. Spore morphology in the moss genus Pterygoneurum Jur. (Pottiaceae) Nova Hedwigia 61: 481–496.Google Scholar
ChmielewskiM.W., S.M. Eppley. 2019. Forest passerines as a novel dispersal vector of viable bryophyte propagules Proceeding of the Royal Society B, Biological Sciences 286(1897): 20182253. doi: 10.1098/rspb.2018.2253Google Scholar, Crossref
EstébanezB., T. Yamaguchi, H.Deguchi. 2006. Ultrastructure of the spore in four Japanese species of Ptychomitrium Fürnr. (Musci) Grana 45(1): 61–70. DOI: 10.1080/00173130600555722.Google Scholar, Crossref
FurnessS. B., R. H. Hall. 1981. An explanation of the intermittent occurrence of Physcomitrium sphaericum (Hedw.) Brid. Journal of Bryology 11: 733–742.Google Scholar
HedenäsL. 2012. Morphological and anatomical features associated with epiphytism among the pleurocarpous mosses—one basis for further researchon adaptations and their evolution.– Journal of Bryology 34: 79–100.Google Scholar
HortonD.G. 1983. A revision of the Encalyptaceae (Musci) with particular reference to the north American taxa Part II Journal of the Hattori Botanical Laboratory 54: 353–532.Google Scholar
IgnatovM.S., V.E. Fedosov, A.V. Fedorova, E.A. Ignatova. 2016. On the systematic position of Discelium (Bryophyta) Arctoa 25(2): 278–284.Google Scholar, Crossref
IgnatovM. S., E. A. Ignatova. 2001. On the zoochory of Schistostega pennata (Schistostegaceae, Musci) Arctoa 10: 83–96.Google Scholar, Crossref
IgnatovM.S. U.N. Spirina, M.A. Kolesnikova, D.A. Ashikhmina, E.A. Ignatova , S.V.Polevova. 2018. Peristome development pattern in Encalypta poses a problem: what is the primary peristomial layer in mosses? — Arctoa 27(1): 1–17. DOI: 10.15298/arctoa.25.01Google Scholar, Crossref
JohanssonV., N.Lönnell, S. Sundberg, K. Hylander. 2014. Release thresholds for moss spores: the importanceof turbulence and sporophyte length Journal of Ecology 102: 721–729. doi: 10.1111/1365-2745.12245Google Scholar, Crossref
KoponenA.K. 1990. Entomophily in the Splachnaceae Botanical Journal of the Linnean Society 104: 115–127.Google Scholar
KozubD., V. Khmelik, Yu. Shapoval, V. Chen­tsov, S. Yatsenko, B. Litovchenko, V. Starykh. 2008. Heicon Focus Software. Heicon Focus Software. http://www.heliconsoft.comGoogle Scholar
LewisL. R. R. Rozzi, B. Goffinet. 2014. Direct longdistance dispersal shapes a New World amphitropical disjunction in the dispersal-limited dung moss Tetraplodon (Bryopsida: Splachnaceae). Journal of Biogeography 41: 2385–2395. DOI:10.1111/jbi.12385Google Scholar, Crossref
MarinoP. 2009. The ecology and evolution of fly dispersed dung mosses (family Splachnaceae): manipulating insect behaviour through odour and visual cues Symbiosis 47: 61–76.Google Scholar
McCuaigB., S.C. Dufour,  R.A. Raguso,  A.P. Bhatt, P. Marino. 2015. Structural changes in plastids of developing Splachnum ampullaceum sporophytes and relationship to odour production Plant Biology (Stuttgart) 17(2): 466–473.Google Scholar
RenzagliaK.S., K.D. McFarland, D.K. Smith. 1997. Anatomy and ultrastructure of the sporophyte of Takakia ceratophylla (Bryophyta) American Journal of Botany 84: 1337–1350.Google Scholar
TryonA.F. B. Lugardon. 1991. Spores of the pteridophyta: surface, wall structure, and diversity based on electron microscope studies New York, Springer Verlag, 648 pp.Google Scholar