Sphagnum Warnstorfii complex in Northern Asia
A. V. Shkurko, O. I. Kuznetsova, V. E. Fedosov

Literature Cited
AndrusRE. 2006. Six new species of Sphagnum (Bryophyta: Sphagnaceae) from North America. Sida, Contributions to Botany 22(2): 959–972. http://www.jstor.org/stable/41969069Google Scholar
DanielsRE, Eddy A. 1990. Handbook of European sphagna, ed. 2. London: HMSO.Google Scholar
DuffyAM, Aguero B, Stenoien HK, Flatberg KI, Ignatov MS, Hassel K, Shaw AJ. 2020. Phylogenetic structure in the Sphagnum recurvum complex (Bryophyta) in relation to taxonomy and geography. American Journal of Botany 107(9): 1283–1295.Google Scholar, Crossref
FedosovVE, Ignatova EA, Ignatov MS, Maksimov AI. 2011. Rare species and preliminary list of mosses of the Anabar Plateau (Subarctic Siberia). Arctoa 20: 153–174Google Scholar
FedosovVE, Ignatova EA, Ignatov MS, Maksimov AI, Zolotov VI. 2012. The moss flora of Bering Island (Commander Islands, North Pacific). Arctoa 21: 133–164.Google Scholar
FedosovVE, Fedorova AV, Fedosov VE, Ignatov MS. 2016. Phylogenetic inference and peristome evolution in haplolepideous mosses, focusing on Pseudoditrichaceae and Ditrichaceae sl. Botanical Journal of the Linnean Society 181(2): 139–155.Google Scholar, Crossref
FedosovVE, Ignatova EA, Bakalin VA, Shkurko AV, Varlygina TI, Koltysheva DE, Kopylova NA. 2020. Bryophytes of Dickson area, Western Taimyr – a model bryophyte flora for Asian arctic tundra. Arctoa 29(2): 201–215.Google Scholar, Crossref
FedosovVE, Shkurko AV, Fedorova AV, Ignatova EA, Solovyeva EN, Brinda JC, Ignatov MS, Kučera J. 2022. Need for split: integrative taxonomy reveals unnoticed diversity in the subaquatic species of Pseudohygrohypnum (Pylaisiaceae, Bryophyta). PeerJ 10: e13260.Google Scholar, Crossref
FlatbergKI, Frisvoll AA. 1984. Sphagnum arcticum sp. nov. The Bryologist 87(2): 143–148.Google Scholar, Crossref
FlatbergKI. 1993. Sphagnum olafii (sect. Acutifolia), a new peat-moss from Svalbard. Journal of Bryology 17(4): 613–620.Google Scholar
FlatbergKI, Thingsgaard K. 2003. Taxonomy and geography of Sphagnum tundrae with a description of S. mirum, sp. nov. (Sphagnaceae, sect. Squarrosa). The Bryologist 106(4): 501–515.Google Scholar
FlatbergKI. 2007. Contributions to the Sphagnum Flora of West Greenland, with Sphagnum concinnum stat. et sp. nov. Lindbergia 32(3): 88–98. http://www.jstor.org/stable/20150243Google Scholar
FlatbergKI. 2007. Sphagnum tescorum (Bryophyta), a New Species in Sect. Acutifolia from the Beringian Region. Lindbergia 32(3): 99–110. http://www.jstor.org/stable/20150244Google Scholar
FlatbergKI, Afonina OM, Mamontov YS, Fedosov VE, Ignatova EA. 2016. On Sphagnum mirum (subgen. Squarrosa) and S. olafii (subgen. Acutifolia)(Sphagnaceae, Bryophyta) in Russia. Arctoa 25(1): 96–101.Google Scholar, Crossref
HammerO, Harper DAT, Ryan PD. 2001. PAST: Paleontological Statistic software package for education and data analysis. Palaeontologia Electronica 4(1): 9 pp.Google Scholar
HallTA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nuclear Acids Symposium Series 41: 95–98.Google Scholar
HasselK, Kyrkjeeide MO, Yousefi N, Presto T, Stenoien HK, Shaw JA, Flatberg KI. 2018. Sphagnum divinum (sp. nov.) and S. medium Limpr. and their relationship to S. magellanicum Brid. Journal of Bryology 40(3): 197–222.Google Scholar, Crossref
HusonDH, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23(2): 254–267.Google Scholar, Crossref
IgnatovMS. 1994. Bryophytes of Altai Mountains. I. Study area and history of its bryological exploration. Arctoa.3: 13–28Google Scholar
IgnatovMS, Afonina OM, Ignatova EA, Abolina A, Akatova TV, Baisheva EZ, Bardunov LV, Baryakina EA, Belkina OA, Bezgodov AG, Boychuk MA, Cherdantseva VYa, Czernyadjeva IV, Doroshina GYa, Dyachenko AP, Fedosov VE, Goldberg IL, Ivanova EI, Jukoniene I, Kannukene L, Kazanovsky SG, Kharzinov ZKh, Kurbatova LE, Ěŕksimov ŔI, Mamatkulov UK, Manakyan VA, Maslovsky OM, Napreenko MG, Otnyukova TN, Partyka LYa, Pisarenko OYu, Popova NN, Rykovsky GF, Tubanova DYa, Zheleznova GV, Zolotov VI. 2006. Checklist of mosses of East Europe and North Asia. Arctoa 15: 1–130.Google Scholar, Crossref
IgnatovMS, Isakova VG, Ignatova EA. 2014. A contribution to the moss flora of Orulgan Range (Yakutia). Arctoa 23: 194–206.Google Scholar, Crossref
IgnatovaEA, Ivanova EI, Ivanov OV, Ignatov MS. 2011. Mosses of the Mus-Khaya Mountain (Yakutia, Asiatic Russia). Arctoa 20: 211–226.Google Scholar, Crossref
KatohK, Standley DN. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30(4): 772–780.Google Scholar
KyrkjeeideMO, Hassel K, Stenoien HK, Presto T, Boström E, Shaw AJ, Flatberg KI. 2015. The dark morph of Sphagnum fuscum (Schimp.) H. Klinggr. in Europe is conspecific with the North American S. beothuk. Journal of Bryology 37(4): 251–266.Google Scholar, Crossref
KyrkjeeideMO, Hassel K, Flatberg KI, Shaw AJ, Brochmann C, Stenoien HK. 2016. Long-distance dispersal and barriers shape genetic structure of peatmosses (Sphagnum) across the Northern Hemisphere. Journal of Biogeography 43(6): 1215–1226.Google Scholar, Crossref
KyrkjeeideMO, Hassel K, Shaw B, Shaw AJ, Temsch EM, Flatberg KI. 2018. Sphagnum incundum a new species in Sphagnum subg. Acutifolia (Sphagnaceae) from boreal and arctic regions of North America. Phytotaxa 333(1): 1–21.Google Scholar, Crossref
KyrkjeeideMO, Hassel K, Aguero B, Temsch EM, Afonina OM, Shaw AJ, Stenoien HK, Flatberg KI. 2019. Sphagnum× lydiae, the first allotriploid peatmoss in the northern hemisphere. The Bryologist 122(1): 38–41.Google Scholar, Crossref
MaksimovAI, Fedosov VE, Ignatova EA. 2016. Sphagnum beringiense (Sphagnaceae, Bryophyta) in Russia. Arctoa 25(1): 102–106.Google Scholar
McqueenCB, Andrus RE. 2007. Sphagnaceae. In: Flora of North America Editorial Committee (eds.) Flora of North America North of Mexico Vol. 27. Oxford University Press, New York, pp. 45–101.Google Scholar
MeleshkoO, Stenoien HK, Speed JD, Flatberg KI, Kyrkjeeide MO, Hasse Kl. 2018. Is interspecific gene flow and speciation in peatmosses (Sphagnum) constrained by phylogenetic relationship and life-history traits? Lindbergia 41(1)Google Scholar, Crossref
MeleshkoO, Martin MD, Korneliussen TS, Schröck C, Lamkowski P, Schmutz J, Healey A, Piatkowski A, Shaw JA, Weston DJ, Flatberg KI, Soцveny P, Hassel K, Stenoien HK. 2021. Extensive genomewide phylogenetic discordance is due to incomplete lineage sorting and not ongoing introgression in a rapidly radiated bryophyte genus. Molecular biology and evolution 38(7): 2750–2766.Google Scholar, Crossref
MüllerK. 2005. SeqState. Applied Bioinformatics 4(1): 65–69.Google Scholar
[OgureevaGN, Leonova NB, Miklyaeva IM, Bocharnikov MV, Fedosov VE, Mechnik EE, Urbanavichus GP, Emeljanova LG, Khljap LA, Rumjantzev VYu, Kuzikov IV, Lipka ON, Arkhipova MV, Buldakova EV, Kadetov NG] Огуреева ГН, Леонова НБ, Микляева ИМ, Бочарников МВ, Федосов ВЭ, Мучник ЕЭ, Урбанавичюс ГП, Емельянова ЛГ, Хляп ЛА, Румянцев ВЮ, Кузиков ИВ, Липка ОН, Архипова МВ, Булдакова ЕВ, Кадетов НГ. 2020. Равнинные биомы. [The plain biomes]. В кн.: Биоразнообразие биомов России (Под ред. Г.Н. Огуреевой). Москва, ФГБУ ИГКЭ [In: Ogureeva, G.N. Russian Biomes Biodiversity. Moscow, FGBU IGKE], 623 pp.Google Scholar
RambautA. 2009. FigTree, version 1.4.3. Computer program distributed by the author, website.Google Scholar
RonquistF, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liang L, Suchard MA, Huelsenbeck PJ. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic biology 61(3): 539–542.Google Scholar
RiccaM, Shaw AJ. 2010. Allopolyploidy and homoploid hybridization in the Sphagnum subsecundum complex (Sphagnaceae: Bryophyta). Biological journal of the Linnean society 99(1): 135–151.Google Scholar
SеstadSM, Stenoien HK, Flatberg KI. 1999. Species delimitation and relationships of the Sphagnum recurvum complex (Bryophyta) – as revealed by isozyme and RAPD markers. Systematic botany 24(1): 95–107.Google Scholar
[Savicz-Lyubitskaya,LI] Савич-Любицкая ЛИ. 2952. Сфагновые (торфяные) мхи. [Sphagnum (peat) mosses]. В кн.: Флора споровых растений СССР. Т.1. Листостебнльные мхи (ред. Савич, В.П.) М.- Л., АН СССР [In: Savicz, V.P. (ed.) Flora sporovykh rastenii SSSR] Vol. 1: 254 pp.Google Scholar
[Savicz-LyubitskayaLI, Smirnova ZN] Савич-Любицкая ЛИ, Смирнова ЗН. 2968. Определитель сфагновых мхов СССР. [Handbook of Sphagnum mosses of the USSR.]. Л., Наука [Leningrad, Nauka], 112 pp.Google Scholar
ShawAJ, Cox CJ, Boles SB. 2003. Polarity of peatmoss (Sphagnum) evolution: who says bryophytes have no roots? American journal of botany 90(12): 1777–1787.Google Scholar, Crossref
ShawAJ, Cox CJ, Boles SB. 2005. Phylogeny, species delimitation, and recombination in Sphagnum section Acutifolia. Systematic botany 30(1): 16–33.Google Scholar, Crossref
ShawJA, Andrus RE, Shaw B. 2008. Sphagnum beringiense sp. nov. (Bryophyta) from Arctic Alaska, based on morphological and molecular data. Systematic Botany 33(3): 469–477.Google Scholar, Crossref
ShawJA, Devos N, Liu Y, Cox CJ, Goffinet B, Flatberg KI, Shaw B. 2016. Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss). Annals of Botany 118(2): 185–196.Google Scholar
ShawAJ, Goffinet B. 2000. Molecular Evidence of Reticulate Evolution in the Peatmosses (Sphagnum), including S. ehyalinum sp. nov. The Bryologist, 103(2): 357–374. http://www.jstor.org/stable/3244163Google Scholar
SimmonsMP, Ochoterena H. 2000. Gaps as characters in sequence-based phylogenetic analyses. Systematic biology 49(2): 369–381.Google Scholar
StenoienH, Bakken S, Flatberg KI. 1997. Phenotypic variation in the Sphagnum recurvum complex: a cultivation experiment. Journal of Bryology 19(4): 731–750.Google Scholar
TamuraK, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular biology and evolution 38(7): 3022–3027.Google Scholar
TrifinopoulosJ, Nguyen LT, Von Haeseler A, Minh BQ. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic acids research 44(W1): W232-W235.Google Scholar, Crossref
YousefiN, Mikulášková E, Stenoien HK, Flatberg KI, Košuthová A, Hájek M, Hassel K. 2019. Genetic and morphological variation in the circumpolar distribution range of Sphagnum warnstorfii: indications of vicariant divergence in a common peatmoss. Botanical Journal of the Linnean Society 189(4): 408–423.Google Scholar, Crossref