Structural traits, canopy density and primary productivity of Sphagnum lenense and S. fuscum in peatlands of the forest-tundra zone (Western Siberia)
N. G. Koronatova

Literature Cited
Alpert,P. & W.C. Oechel. 1984. Microdisrtibution and water loss resistances of selected bryophytes in an Alalskan Eriophorum tussock tundra. Holarctic Ecology 7: 111–118.Google Scholar
Asada,T., B.G. Warner, A. Banner. 2003. Growth of mosses in relation to climate factors in a hypermaritime coastal peatland in British Columbia, Canada. The Bryologist 106(4): 516–527.Google Scholar, Crossref
Bengtsson,F., G. Granath, H. Rydin. 2016. Photosynthesis, growth, and decay traits in Sphagnum – a multispecies comparison. Ecology and Evolution 6(10): 3325–3341.Google Scholar, Crossref
Bengtsson,F, G. Granath, N. Cronberg, H. Rydin. 2020. Mechanisms behind species-specific water economy responses to water level drawdown in peat mosses. Annals of Botany 20:1–12.Google Scholar, Crossref
Bengtsson,F, H. Rydin, J.L. Baltzer, L. Bragazza, Zh.-J. Bu, S.J.M. Caporn, E. Dorrepaal Et Al. 2021. Environmental drivers of Sphagnum growth in mires across the Holarctic region. Journal of Ecology 109(1): 417–431.Google Scholar, Crossref
Deane-Coe,K.K., M. Mauritz, G. Celis, V. Salmon, K.G. Crummer, S.M. Natali & E.A.G. Schuur. 2015. Experimental warming alters productivity and isotopic signatures of tundra mosses. Ecosystems 18(6): 1070–1082.Google Scholar, Crossref
[Grabovik,S.I., L.V. Kantserova & S.R. Znamenskiy] Грабовик, С.И., Л.В. Канцерова, С.Р. Знаменский. 2024. Результаты многолетних исследований годичного прироста мхов рода Sphagnum L. В среднетаежной Карелии. [Results of long-term studies of the annual growth of mosses of the genus Sphagnum L. in the central taiga of Karelia] Экология [Russian Journal of Ecology] 4: 256–272.Google Scholar, Crossref
Hammer,O., D.A.T. Harper & P.D. Ryan. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1): 9pp.Google Scholar
Jorgenson,M.T., M. Kanevskiy, C. Roland, K. Hill, D. Schirokauer, S. Stehn, B. Schroeder & Y. Shur. 2022. Repeated permafrost formation and degradation in boreal peatland ecosystems in relation to climate extremes, fire, ecological shifts, and a geomorphic legacy. Atmosphere 13: 1170.Google Scholar, Crossref
Kolesnichenko,L.G., S.N. Vorobyov, S.N. Kirpotin, Iu.Y. Kolesnichenko, R.M. Manasypov, I.I. Volkova, V.I. Suslyaev, K.V. Dorozhkin, A.V. Sorotchinsky & O.S. Pokrovsky. 2019. Changes in the palsa landscapes’ components in the West Siberian northern taiga 10 years after wildfires. IOP Conference Series: Earth and Environmental Science 232: 012021.Google Scholar, Crossref
Konstantinova,N.A., E.D. Lapshina & G.N. Ganasevich. 2023. The liverworts of the Avam tundra (southern Taimyr). Arctoa 32: 34–47.Google Scholar, Crossref
Konstantinova,N.A., E.D. Lapshina & I.V. Filippov. 2024. Liverworts of the southern part of “Kytalyk” national park (tundra zone of republic of Sakha (Yakutia), Russia) Arctoa 33: 172–183.Google Scholar, Crossref
Koronatova,N.G., N.P. Kosykh, E.A. Saib, V.A. Stepanova, E.K. Vishnyakova & G. Granath. 2022. Weather factors in different growing periods determine inter-annual change in growth of four Sphagnum species: evidence from an eight-year study. Wetlands 42(8): 118.Google Scholar, Crossref
Laing,C.G., G. Granath, L.R. Belyea, K.E. Allton & H. Rydin. 2014. Tradeoffs and scaling of functional traits in Sphagnum as drivers of carbon cycling in peatlands. Oikos 123: 817–828.Google Scholar, Crossref
[Lapshina,E.D., I.V. Filippov & G.N. Ganasevich] Лапшина, Е.Д., И.В. Филиппов, Г.Н. Ганасевич. 2023. Растительность торфяных бугров болотных комплексов севера Западной Сибири и полуострова Таймыр. [The vegetation of frozen peat palsa of mire complexes in the north of Western Siberia and Taimyr peninsula] Растительность России [Vegetation of Russia] 47: 72–111.Google Scholar, Crossref
Luken,J.O. & W.D. Billings. 1984. Succession and biomass allocation as controlled by Sphagnum in an Alaskan peatland. Canadian Journal of Botany 63: 1500–1507.Google Scholar
[Maksimov,A.I.] Максимов А.И. 1982. К вопросу о приросте сфагновых мхов. [To the question of Sphagnum growth]. В кн.: Комплексные исследования растительности болот Карелии (ред. Лопатин, В.Д. и Юдина, В.Ф.) Петрозаводск: Кар. отд-ние АН СССР [In: Lopatin, V.D., Yudina, V.F. (eds) Kompleksnye issledovaniya rastitelnosti bolot Karelii. Petrozavodsk: KB AS USSA]: 170–179.Google Scholar
Mazziotta,A., G. Granath, H. Rydin, F. Bengtsson & J. Norberg. 2019. Scaling functional traits to ecosystem processes: towards a mechanistic understanding in peat mosses. Journal of Ecology 107: 843–859.Google Scholar, Crossref
Nijp,J.J., J. Limpens, K. Metselaar, S.E.A.T.M.Van Der Zee, F. Berendse & B.J.M. Robroek. 2014. Can frequent precipitation moderate the impact of drought on peatmoss carbon uptake in northern peatlands? New Phytologist 203: 70–80.Google Scholar, Crossref
Paal,J., A. Pesterov & V. Neshataeva. 2021. Diversity of Pinus pumila-dominated communities of the Kamchatka Peninsula. Forestry Studies | Metsanduslikud Uurimused 74: 26–57.Google Scholar
Pastukhov,A., T. Marchenko-Vagapova, S. Loiko & D. Kaverin. 2021. Vulnerability of the Ancient Peat Plateaus in Western Siberia. Plants 10: 2813.Google Scholar, Crossref
Popov,Yu.S. 2019. Species distribution patterns in subgenus Cuspidata (genus Sphagnum L.) on the East European Plain and Eastern Fennoscandia. In: M.S. Sabovljevic and A.D. Sabovljevic (eds.). Bryophytes. IntechOpen.Google Scholar
Preis,Yu. I., G. V. Simonova & E. A. Slagoda. 2016. Detailed reconstruction of the functional state of the Central Yamal khasyrey as a response to local conditions and regional climate changes in the late Holocene. IOP Conference Series: Earth and Environmental Science 48: 012010.Google Scholar, Crossref
Raudina,T.V., G.I. Istigechev & S.V. Loiko. 2023. Soil-ecological conditions of the north taiga flat-mound bog, Western Siberia. Acta Biologica Sibirica 9: 195–208.Google Scholar, Crossref
Rydin,H. & J.K. Jeglum. 2013. The biology of peatlands, 2nd edn. Oxford: Oxford University Press: 432 p.Google Scholar
Schipperges,B. & H. Rydin. 1998. Response of photosynthesis of Sphagnum species from contrasting microhabitats to tissue water content and repeated desiccation. New Phytologist 140: 677–684.Google Scholar
Vitt,D.H. 2014. A key and review of bryophytes common in North American peatlands. Evansia 31(4): 121–158.Google Scholar, Crossref
Waddington,J.M., P.J. Morris, N. Kettridge, G. Granath, D.K. Thompson & P.A. Moore. 2015. Hydrological feedbacks in northern peatlands. Ecohydrology 8: 113–127.Google Scholar, Crossref
Zarov,E.A., L.L. Golubyatnikov, E.D. Lapshina & S.V. Loyko. 2021. Vegetation and soils of tundra landscapes in the Pur–Taz interfluvial region. Biology Bulletin 48, Suppl. 3: S118–S127.Google Scholar, Crossref