New data on the taxonomy and faunistics of North Asian linyphiid spiders (Aranei Linyphiidae).

Новые данные по систематике и фаунистике североазиатских пауков-линифиид (Aranei Linyphiidae).

K.Y. Eskov*, Y.M. Marusik**
K.Yu. Еськов*, Ю.М. Марусяк**

* Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow 117647 Russia.
* Палеонтологический Институт РАН, Профсоюзная ул., 123, Москва 117647 Россия.
** Institute of Biological Problems of the North, Russian Academy of Sciences, K. Marx pr. 24, Magadan 685010 Russia.
* Институт биологических проблем Севера ДВО РАН, пр-т К. Маркаса, 24, Магадан 685010 Россия.

KEY WORDS: Linyphiidae, North Asia, taxonomy, faunistics.
КЛЮЧЕВЫЕ СЛОВА: Linyphiidae, Северная Азия, систематика, фаунистика.

ABSTRACT: 5 new genera are established. 16 new and 6 little-known species are described. 12 new synonyms and 10 new combinations are proposed. 38 previous misidentifications of North Asian linyphiids are corrected. Species ranges of 176 linyphiids are precised.

РЕЗЮМЕ. Установлено 5 новых родов, описано 16 новых и 6 малоизвестных видов. Предложено 12 новых синонимов и 10 новых комбинаций. Выправлено 38 прежних ошибочных определений североазиатских линфиид. Существенно уточнены ареалы 176 видов.

Introduction.
The paper continues our studies on Siberian and Far Eastern linyphiids, this time dealing mainly with the species which have hitherto been the subject of any confusion(s). Clarification of the taxonomic status of some well-known species restudied has also prompted either the erection of new genera for their comprical or a reconsideration of the limits of certain long-established genera. Furthermore, all misidentifications of North Asian linyphiids, both established and presumed, are summed here. As a result, all mistakes of species identifications and generic allocations are corrected/summed up in this paper which can be regarded as a preliminary stage in the work of one of us (KE) devoted to a compilation of a complete revised geographic catalogue of the linyphiids of North Asia. In addition, some faunistic records sufficiently seriously extending/clarifying certain species ranges are presented here.

Material and methods.
Besides the collecting of the authors, abbreviated in the text as (KE) and (YM), respectively, we have used also materials taken by Mr. V.D. Bakurov, Novosibirsk (VB); Dr. A.R. Babenko, Moscow (ABB); Dr. A.V. Barkalov, Novosibirsk (AVB); Dr. A.M. Basarukin, Yuzhno-Sakhalinsk (AB); Dr. D.I. Berman, Magadan (DB); Dr. B.P. Bessolitsyna, Irkutsk (BB); Mrs. Bordovitsyna, Novosibirsk; Dr. S.M. Bukhalo, Magadan (SB); Dr. V.I. Bulavinsev (VIB); Mrs. G.N. Chernova, Magadan (GC); Prof. Y.I. Chernov, Moscow (YC); Dr. S.N. Danilov, Ulan-Ude (SD); Mrs. Danilova, Novosibirsk; Dr. N.E. Dokuchaev, Magadan (ND); Dr. P.M. Dunin, Tagliatti (PD); Mr. P.V. Durmanov, Perm (PVD); Dr. S.L. Esjunin, Perm (SE); Mr. G.N. Ganin, Khabarovsk (GG); Dr. S.I. Golovatch, Moscow (SG); Mr. V.G. Grachev (VG); Mrs. I.B. Grishkan, Magadan (IG); Mr. M.N. Gromyko, Sikhote-Alin State Reserve (MG); Mr. S.V. Ivanov, Bolshekhetskysky Reserve (SI); Mrs. O.A. Khruleva, Wrangel Island Reserve (OK); Dr. Y.I. Korobeineckov, Perm (YK); Mr. V.O. Kozminykhe, Perm (VK); Dr. G.F. Kurcheva, Moscow (GK); Mr. D.K. Kurentchikov, Khabarovsk (DK); Dr. D.V. Logunov, Novosibirsk (DL); Mr. O.V. Lyakhov, Pavlovar (OL); Dr K.G. Mikhailov, Moscow (KM); Dr. E.V. Mikhailova, Vladivostok (EM); Mrs. T.V. Pavlenko, Petrovskov-Kamchatsky (TP); Mrs. A.M. Pegov, Moscow (AP); Dr. N.M. Poryadina, Tyumen (NP); Dr. N.A. Ryabinin, Khabarovsk (NR); Dr. A.S. Ryabukhin, Magadan (ASR); Mr. A.B. Ryvkin, Moscow (AR); Dr. W. Schawaller, Stuttgart (WS);
Arctigerone pilifrons (L. Koch, 1879), **comb.n.**

Erigone pilifrons L.Koch, 1879: 62, fig. 14 (♂♂, ♂♂) (♂♂, ♂♂).

Acaractenochus pilifrons Holm, 1970: 190, fig. 2 (♂♂).

Acaractenochus pilifrons: Leech & Ryan, 1972: 1788, figs 1-9 (♂♂, ♂♂).

Acaractenochus pilifrons Holm, 1973: 78, figs 5-10 (♂♂, ♂♂).

MATERIAL. 1 ♂, Nemets Autonomous Region, Yugor Peninsula, Belyi Nos Cape, 17.VI.1983 (leg. VIB); 1 ♂♂, Taimyr Autonomous Region, ca. 60 km S of Diikson, Ragozhinka River, 4.VIII.1982 (leg. YC); 1 ♂♂, Novaya River (left tributary of Khantaga River), Ary-Mas, 17.VII.1992 (leg. AR); 1 ♂♂, Yakut Autonomous Republic, lower Lena River, Kyusyr, 20.VII.1989 (leg. KE); 1 ♂♂, Chukot Autonomous Region, Chanskaya Gulka Gulf, delta of Chann River, 15.VI.1985 (leg. ASR); 2 ♂♂, Wrangel Island, lower Gussinaya River, 19.VII.1984 (leg. OK).

DISTRIBUTION. Polar Siberia from Chukot Peninsula in the east up to Yugor Peninsula in the west [Holm, 1973; Eskov, 1985; Marusik et al., 1992; Marusik, Eskov, Koponen, Vinokurov, 1993], and Canadian Archipelago [Leech & Ryan, 1972]. The species seems to be restricted to the tundra zone and it has never been recorded even in the alpine belt of North Siberian mountains (e.g., Polar Urals, Putorana Plateau, Cherskogo Mt. Range).

Ceratinopsis Emerton, 1882.

Ceratinopsis logunovi sp.n.

Figs 6-9.

DESCRIPTION. Total ♂♂/♀ length 1.70-1.88/2.38-2.50. Carapace dark brown, its length/width 0.65-0.75/0.55-0.58 in ♂♂, 0.83-0.90/0.65-0.70 in ♀♀; carapace unmodified. Legs brownish-yellow, length of joints of legs I/IV 0.55-0.65+0.18/0.20-0.40/0.50+0.38/0.45+0.20/0.35 in ♂♂, 0.63/0.75+0.23/0.23+0.53/0.63+0.48/0.53+0.38/0.40 in ♀♀; tibial spines 1111; Tm 10.47, Tm IV absent. Abdomen dark grey. Genitalia of both ♂♂ and ♀♀ as in Figs 6-9.

COMPARISON. By the shape of the genitalia, the new species seems most closely related to the Siberian *C. okhotensis* Eskov, 1992 (= *C. orientalis* Eskov, 1989, praecipitated), but differs in the more long and medially not constricted process of the ♂♂ palpal tibia as well as by the more narrow epigynal plate [ep. Eskov, 1989: figs 59-62].

ETYMOLOGY. From the Arctic, and the generic name *Erigone*.**
Figs. 1-9. *Dicynbiium yaginumae* sp.n. (1-5), and *Ceratinopsis kogenovi* sp.n. (6-9): 1, 6 — ♀ palp, ectal; 2 — ♀ palp, dorsal; 7 — ♀ palp, mesal; 3, 8 — epigyne, frontal; 4 — epigyne, posterior; 5, 9 — vulva. Scales = 0.1 mm.

Рис. 1-9. *Dicynbiium yaginumae* sp.n. (1-5) и *Ceratinopsis kogenovi* sp.n. (6-9): 1, 6 — пальпа ♀, вид с внешней стороны; 2 — пальпа ♀, вид сверху; 7 — пальпа ♀, вид с внутренней стороны; 3, 8 — эпиги́н, вид спереди; 4 — эпиги́н, вид сзади; 5, 9 — ву́лва. Масштаб 0,1 мм.
DISTRIBUTION. Mountains of South Siberia: East Sayan Mts, Akademika Obrucheva and Abakan-sky mountain ranges.

ETYMOLOGY. The species is named after the Russian arachnologist Dmitry V. Logunov (Novosibirsk).

DICYMION Menge, 1867.

DICYMION YAGINUMA sp.n.
Figs 1-5.

DESCRIPTION. Total ♂/♀ length 2.00-2.63/2.88-3.20. Carapace brownish-yellow, its length/width 0.90-1.13/0.73-0.88 in ♂, 1.13-1.20/0.90-0.95 in ♀; ♂ carapace with a declivously elevated cephalic portion. Legs dark yellow, length of joints of legs I/IV 1.00/1.18+0.30/0.33+0.90/1.05+0.85/0.93+0.55/0.60 in ♂, 0.85/1.00+0.30/0.30+0.75/0.85+0.68/0.78+0.58/0.55 in ♀. Tibia I in ♂ unmodified; tibial spines 2211; Tm I 0.58, Tm IV absent. Abdomen grey. Genitalia of both ♂ and ♀ as in Figs 1-5; length of ♂ palpal patella 0.45, its 1/d 3.56.

COMPARISON. By the shape of the genitalia, the new species seems extremely closely related to the Siberian L. pilipes (Kulczynski, 1908) (= L. laticorne Eskov, 1989, syn.n.), but it differs in the more elongated ♂ palpal tibia with a more short and curved tooth-like apophysis, suprategular membrane rounded distad, and less projected epigyne [cp. Kulczynski, 1908: figs 19, 24; Eskov, 1989: figs 24-28].

DISTRIBUTION. The Russian Far East: northern Sakhalin, middle and lower flows of Amur River.

ETYMOLOGY. The species is named after the Chinese arachnologist Zhu Chuandian.

LEPHTYPHANTES MENGE, 1866

LEPHTYPHANTES SAIJANENSIS sp.n.
Figs 24-26.

MATERIAL. Holotype, ♂: Krasnoyarsk Prov., Ernakovo Distr., Oisky Pass, Olenya Rechka, subalpine meadow (1600-1700 m alt.), 27-28 VII 1992 (leg. DL). — Paratypes: 1 ♂ (Tanasevitch’s collection), Irkutsk Area, Khamar-Daban Mt. Range, Mangutai, Solzan River valley, 9 VIII 1978 (leg. VS). Other material: 1 ♂, Krasnoyarsk Prov., Ernakovo Distr., Aradan, shingle bank of Us River, 8-9 VII 1990 (material is lost); 3 ♀, Oisky Pass, Olenya Rechka, subalpine meadow (1600-1700 m alt.), 10-11 VII 1990 (material is lost); 1 ♂, same locality, mountain tundra (1800 m alt.), 10-11 VII 1990 (all leg. DL) (material is lost).

DESCRIPTION. Total ♀ length 4.03-4.25. Carapace light brown, its length/width 1.63-1.73/1.38-1.43; ♀ chelica with three large promarginal teeth.
Figs. 10-20. *Lasianopus zhui* sp.n. (10-14), *Panamomops desperii* sp.n. (15-19), and *Panamomops dybowskii* (O.P.-Cambridge) (20): 10, 16 — ♂ palp, ectal; 11 — ♂ palp, mesal; 12, 17 — ♂ palpal tibia, dorsal; 18 — ♂ palpal tibia, mesal; 15 — ♂ carapace, lateral; 14, 19, 20 — epigyne, frontal; 13 — vulva. Scales = 0.1 mm.

Legs light brown, length of joints of ♀ legs I/IV 2.85/2.63+0.58/0.53+2.88/2.58+2.55/2.15+1.45/1.13. Leg spinulation: Fe I (3d, 2 pl), Fe II (2d), Fe III (1d), Fe IV (); Pt I-IV (1d); Ti I (3d, 2 rl, 2 pl, 2v), Ti II (3d, 1 v), Ti III-IV (3d); Mt I-III (2d, 1 pl), Mt IV (2d). Abdomen dark grey with a dirty-white dorsal pattern as a series of pale cross bands. ♀ genitalia as in Figs 24-26, ♂ is still unknown.

COMPARISON. The new species seems to be taxonomically isolated. By the shape of the epigyne, it is similar to _L. kronebergii_ Tanasevitch, 1989 and
L. turkestanicus Tanasevitch, 1989, both from Middle Asia [cp. Tanasevitch, 1989b: figs 43-44, 49-50], but it is clearly distinguished by the leg spinulation and abdominal pattern. The generic allocation of Leptyphantes sajanensis sp.n., as well as of both L. kronebergi and L. turkestanicus [A.V. Tanasevich, personal communication] may be reconsidered in the future.

DISTRIBUTION. Mountains of South Siberia: West Sayan Mts. and Khamar-Daban Mt. Range.

Leptyphantes sterneri sp.n.
Figs 21-23.

DESCRIPTION. Total ♂ length 1.88. Carapace yellow, its length/width 0.88/0.75. Legs yellow, length of joints of ♂ legs I/IV 1.03/1.03+0.25/0.35+0.98/0.95+0.95/0.93+0.63/0.58. Leg spinulation: Fe I (1 pl), Fe II-IV (-); Ti I (2d, 1 r, 1 pl), Ti II (2d, 1 r), Ti III-IV (2d); Mt I-III (1d), Mt IV (-). Abdomen dirty-white. Male genitalia as in Figs 21-23, ♀ is still unknown.

COMPARISON. The new species clearly belongs to the bergstroemi complex of Saari et al. 1993 and it can be distinguished from both its members, i.e. L. bergstroemi Schenkel, 1930 and L. flagellifer Tanasevich, 1987, by the straight tip of the lamella characteristica [cp. Tanasevich, 1987: fig. 1, and Palmgren, 1975: fig. 22].

DISTRIBUTION. The Russian Far East: northern Sakhalin Island.

ETYMOLOGY. The species is named after Mr. Maurice Sterner (York, Pennsylvania), who has sponsored a research trip of one of us (YM) to Chukot Peninsula.

Masikia Millidge, 1984.

TYPE SPECIES. Masikiaatra Millidge, 1984 (= Macargus indisictitus Kulczynski, 1908).

DEFINITION. Medium-sized, dark coloured ergonines, ♂ carapace without postocular pits, deviously elevated behind the eye area, elevation provided with a few robust setae. Chelicerae unmodified. Tibial spines 2222 or 2221, Tm 1.05-0.60, Tm IV absent. Abdomen unmodified, concordous.

TAXONOMIC REMARKS. The genus clearly belongs to the Erigonae-group of genera of Millidge [1977] and it seems to be closely related to Collinias O. P.-Cambridge, 1913. Masikia is easily distinguished by the long semimembranous suprategular apophysis, triangular epigyne with a posteriorly situated medial plate, as well as by the setiferous postocular elevation of the ♂ carapace.

COMPOSITION AND DISTRIBUTION. Besides the type-species M. indistictus (Kulczynski, 1908), from the tundra-zone of both Asia and North America [Millidge, 1984; Eskov, 1985], the genus comprises Montilaira relicta Chamberlin, 1948, from the mountains of New England, Vermont [Chamberlin, 1948] (comb.n.).

Masikia indistictus (Kulczynski, 1908)
Figs 27-33.

Macargus (?) indistictus Kulczynski, 1908: 34, fig. 27 (♀).
Macargus solitarius Dahl, 1928: 25, fig. 44 (♀) (syn.n.).
Masikiaatra Millidge, 1984: 154, figs 125, 127, 129 (♀) [synonymized by Eskov, 1985].
Masikalma caliginosa Millidge, 1984: 154, figs 126, 130 (♀) [synonymized by Eskov, 1985].

MATERIAL. 1 ♂, 1 ♀, Nemets Autonomous Region, Yugor Peninsula, Yu-Shar Polar station, 26-VI.1983 (leg. VIB); 9 ♀, Yamal Autonomous Region, Schuchya River, mouth of Tankova-Yakha River, 24-VIII.1980 (leg. AT & EV); 1 ♂, Taimyr Autonomous Region, ca. 60 km S of Dikson, Ragozinka River, VIII.1982 (leg. YC); 4 ♂, tablets, eastern point of Byrranga Mts, Taimyr Reserve, 27-VII.1992 (leg. AR); 4 ♀, Noraya River (left tributary of Khatanga River), Ary-Mas, 17-VII.1992 (leg. AR); 3 ♂, 3 ♀, Yakut Autonomous Republic, Yana Gulf, Makar Island, V.1985 (leg. VIB); 1 ♀, Chukot Autonomous Region, Provideniya, 21-VII.1972 (leg. AT); 8 ♂, 13 ♀, Wrangel Island, lower Giusina River, VI-VIII.1984 (leg. OK).

DESCRIPTION. Total ♂/♀ length 1.88-2.10/1.85-2.08. Carapace brownish-grey, its length/width 0.68-0.78/0.63-0.70 in ♂, 0.75-0.88/0.60-0.70 in ♀; ♂ carapace as in Fig. 27. Legs greyish-yellow, length of joints of legs I/IV 0.60/0.70+0.23/0.23+0.48/0.60+0.45/0.55+0.38/0.40 in ♂, 0.63/0.75+0.23/0.25+0.50/0.70+0.48/0.60+0.38/0.40 in ♀; tibial spines 2222 (distal spine of Ti IV relatively short, in some specimens absent), Tm 1.08. Abdomen dark grey. Genitalia of both ♂ and ♀ as in Figs 28-33.
Figs. 27-33. *M. indicata* (Kulczynski): 27 — C' carapace, lateral; 28 — C' palp, ectal; 29 — C' palp, ventral; 30 — C' palp palp tibia, dorsal; 31 — epigyne, frontal; 32 — epigyne, posterior; 33 — vulva. Scales = 0.1 mm.

Рис. 27-33. *M. indicata* (Kulczynski): 27 — каркас C', вид сбоку; 28 — палец C', вид с внешней стороны; 29 — палец C', вид снизу; 30 — голень пальца C', вид сверху; 31 — эпигиная, вид сбоку; 32 — эпигиная, вид снизу; 33 — вульва. Масштаб 0.1 мм.

COMPARISON. *M. indicata* can be distinguished from the only known congener, *M. relicta* (Chamberlin, 1948), comb.n., by the more long and narrow medial plate of the epigyne [c.f. Chamberlin, 1948: figs 69-70].

DISTRIBUTION. Polar Siberia from Chukot Peninsula in the east up to Yugor Peninsula and Novaya Zemlya Islands in the west [Kulczynski, 1908; Dahl, 1928; Eskov, 1986; Marusik et al, 1992; Marusik, Eskov, Koponen, Vinokurov, 1993], northern Alaska and Polar Canadian Archipelago [Mil-lidge, 1884]. The species seems to be restricted to
the tundra zone and it has not been recorded even in the alpine belt of North Siberian mountains (e.g. Polar Urals, Putorana Plateau, Cherskogo Mt. Range).

Monocerillus Tanasevitch, 1983

Monocerillus montanus Tanasevitch, 1983

Figs 38-40.

Monocerillus montanus: Tanasevitch, 1983: 218, figs 2, 5-7 (♂).

MATERIAL: 1 ♂, 4 ♀, Taimyr Autonomous Region, Putorana Plateau, Ayan Lake, mouth of Gulyami River, 10.VIII.1983; 2 ♂, 2 ♀, Magadan Area, upper Kolyma River, Sibit-Tyellakh, 20.VIII.1984 (leg. KE); 1 ♀, Kamchatka Peninsula, basin of Kamchatka River, environs of Esso, upper Uksichan River, mountain tundra, 24.VIII.1991 (leg. TP).

DISTRIBUTION: Northern Siberia from Chukot Peninsula in the east up to the Urals in the west [Tanasevitch, 1983; Eskov, 1988a; Marusik et al., 1992]. The species seems to be restricted to the mountain regions of the hyperarctic belt (Polar Urals, Putorana Plateau, Cherskogo Mt. Range, Inner Chukot mountains, Sredniny Mt. Range in Kamchatka).

Pacifiphantes gen.n.

TYPE SPECIES: *Pacifiphantes zakharovii* sp.n.
DEFINITION: Medium-sized, dark coloured linyphiines, ♂ carapace unmodified, eyes medium-sized. Male chelicer a with three large contiguous promarginal teeth opposite distal portion of cheliceral claw. Legs moderately long, leg formula 1423. Leg spinulation: Fe I (1d, 2p), Fe II-IV (1d); Ti I (2d, 1 p, 1 r), Ti II (2d, 1 r), Ti III-IV (2d); Mt I-IV (—). Tm I ca. 0.25, Tm IV absent. Abdomen with a dorsal pattern as a series of pale cross bands.

Cymbium simple, without proximal hump. Paracymbium large, flat, hook-like, setiferous. Tegulum elongated, narrow. Suprategulum spoon-like, with a short, stout, claw-shaped frontal apophysis. Embolic division complex and comprising (i) a large, flat, rhombic radix, (ii) a large, linguiform lamella caracteristica with a digitiform apophysis directed frontally, and (iii) a short, stout, claw-shaped embolus. Epigyn not protruded, with a semicircular aperture, without scapus and with a short, broadened parrnula.

TAXONOMIC REMARKS: The new genus clearly belongs to the Porrorhoma-group of genera of Millidge [1977], being particularly close to *Asiophantes* Eskov, 1993. *Pacifiphantes* gen.n. can be distinguished by the very short embolus and suprategular apophysis as well as by the not protruding epigyne with a clearly delimited parrnula [cp. Eskov, 1993; figs 1-8].

COMPOSITION AND DISTRIBUTION: Besides the type species *P. zakharovii* sp.n., from the southern Russian Far East (Ussuri Region), the new genus also includes *Bathyphantes magnificus* Chamberlin & Ivie, 1943, from the Pacific coast of North America [Ivie, 1969] (comb.n.).

ETYMOLOGY: From the Pacific Ocean, and the Greek "phyantes" - weaver.

Pacifiphantes zakharovii sp.n.

Figs 41-44.

MATERIAL: Holotype, ♂: Maritime Prov., Krivoyaya Pad Reserve, Krivoyaya River, humid valley forest of *Fraxinus*, *Phelodendron* and *Radus*, 27.IX.1978 (leg. BZ).
— Paratypes: 5 ♀, together with holotype; 1 ♀, Chuveevka Dist., Pravaya Sokolovka River (basin of Ussuri River), valley *Il'ina* forest, 16.IX.1974 (leg. GK); 2 ♂, 4 ♀, Khabarovsk Prov., Bolshoye-Khekhtsirsky Reserve, leaf litter on bank of stream, 16.VI.1987 (leg. DL).
DESCRIPTION: Total ♀/♂ length 2.75-2.88/2.80-3.13. Carapace brown, its length/width 1.20-1.25/0.90-0.93 in ♂, 1.08-1.18/0.83-0.88 in ♀. Legs brownish-yellow, length of joints of legs I/IV 1.55/1.45+0.33/0.30+1.45/1.30+1.30/1.23+0.85/0.75 in ♀, 1.43/1.35+0.30/0.28+1.30/1.20+1.20/1.15+0.80/0.65 in ♀. Abdomen dark grey with a dirty-white dorsal pattern. Genitalia of both ♂ and ♀ as in Figs 41-44.

COMPARISON: *P. zakharovii* sp.n. can be distinguished from the only known congenere, *P. magnificus* (Chamberlin & Ivie, 1943) comb.n., by the more elongated aperture of the epigyne as well as by the smaller body size and inconcolorous (lacking dusky rings) leg joints [cp. Ivie, 1969: 54, fig. 109].

DISTRIBUTION: The southern Russian Far East; Ussuri River region.

ETYMOLOGY: The species is named after the Russian entomologist Boris P. Zakharov (Novosibirsk), the collector of the holotype.

Panamomops Simon, 1884.

Panamomops depilis sp.n.
Figs 15-19.

— Paratypes: 1 ♀, Kazakhstan, East-Kazakhstan.
Figs. 34-40. *Sibirocyba incerta* (Kulczynski) (34-37), and *Monocerellus montanus* Tanasevitch (38-40): 34 — ♂ carapace, dorsal; 38 — ♂ carapace, lateral; 35, 39 — ♂ palp, ectal; 36 — suprategulum and embolic division, ventral; 37 — epigyne, frontal; 40 — epigyne, posterior. Scales = 0.1 mm.

Figs. 41-48. *Pacifiphantes zakhrovi* gen. et sp. n. (41-44), and *Porrbomma longijangensis* Zhu & Wang (45-48): 41, 45 — ♂ palp, ectal; 42, 46 — ♂ palp, ventroectal; 43, 47 — epigyne, frontal; 42, 48 — vulva. Scales = 0.1 mm.

DESCRIPTION. Total φ' length 1.23/1.50. Carapace dark yellow, its length/width 0.58/0.44 in σ', 0.58/0.42 in φ; σ' carapace as in Fig. 15. Legs dark yellow, length of joints of legs I/IV 0.38/0.45+0.15/0.15+0.30/0.38+0.25/0.28+0.20/0.23 in σ', 0.38/0.48+0.15/0.15+0.33/0.38+0.25/0.28+0.20/0.23 in φ; tibial spines 2211; Tm I 0.40, Tm IV absent. Abdomen pale grey. Genitalia of both σ' and φ as in Figs 16-19.

COMPARISON. By the shape of the σ' palp, the new species seems to be most close to the trans-Palaearctic $P. tauricornis$ Simon, 1884 [cp. Viehle, 1960: ligs 39/40, 39/397], while by the shape of the epignye it is similar to the Siberian $P. dybowskii$ (O. P.-Cambridge, 1873) [cp. Fig. 20; the φ genitalia of this species are figured here for the first time]. $P. depilus$ sp.n. can be distinguished from all congeners by the unmodified σ' carapace lacking bundles of hairs.

DISTRIBUTION. Mountains of South Siberia: West Sayan Mts. and Saur Mt. Range.

Poeciloneta Kulczyński, 1894

Poeciloneta (Poeciltoneta) theridiformis (Emeron, 1911) Figs 52-53.

Bathyphantes theridiformis Emerton, 1911: 396.

MATERIAL. 1 φ, Tuva Autonomous Republic, Kartushinsky Mt. Range, Shivilich, 5.VII.1991 (leg. DL); 1 φ, Yakut Autonomous Republic, Aldan River (right tributary of Lena River) 20 km upstream of Khandyga, 30.VIII.1990 (leg. IS); 1 σ', Magadan Area, upper Kolyma River, Seimchan, 2-4.IX.1990 (leg. YM); 1 σ', 3 km S of Khasyu, Khasyu River, 5.X.1993 (leg. YM); 1 σ', Sakhalin Island, Aniva Distr., Novoaleksandrovsk, 20-30.V.1988 (leg. AB).

DISTRIBUTION. East and South Siberia, Russian Far East. This species has been recorded only in the northeastern USA (New Hampshire) [Zorsch, 1937]. New to the Palearctic.

Poeciltoneta (Acanthoneta) dokutichaevi sp.n. Figs 49-51.

Poeciltoneta (Acanthoneta) aggressa, non Chamberlin & Ivie, 1943: Eskov & Marusik, 1992: 34, ligs 11-13 (cσ').

MATERIAL. Holotype, σ', Magadan City, in a building, 28. VII.1991 (YM). — Paratypes: 4 σ', Magadan Area, middle Chelomdzha River (left tributary of Tauer River), VI-VIII.1986 (ND).

DESCRIPTION. Total φ' length 3.10-3.28. Carapace brownish-yellow, with a dark grey medial spot, radial stripes and margins, its length/width 1.40-1.48/1.10-1.20 in σ', clypeus with several hairs. Chelicerae medium-sized, unmodified, with three promarginal teeth. Legs dark yellow, each joint annulated with a wide, medial, pale grey and a narrow, terminal, dark grey ring; leg spination: Fe I 0.100, Fe II IV - 0.000, Ti I - 2000, Ti II - 2010, Ti III IV - 2001, Mt I IV - 1001; Tm I 0.80, Tm IV present; length of joints of legs I/IV 2.10/1.95+0.38/0.35+2.10/1.88+2.18/2.00+0.93/0.90 in σ'. Abdomen black with a white dorsal pattern. σ' genitalia as in Figs 49-51.

COMPARISON. The new species is very close to $P. (A.) aggressa$ (Chamberlin & Ivie, 1943), from the Pacific coast of North America, being distinguished by the truncated outgrowth of the paracyphium [cp. Chamberlin & Ivie, 1943: fig. 19]. This species has been erroneously reported from Magadan Area as $P. aggressa$, but with some reservations: it should be noted that in Siberian and Nearctic specimens of $P. (A.) aggressa$, the shape of the paracyphium seems to be quite dissimilar [...]; we possibly face two subspecies separated by the Bering Strait [Eskov & Marusik, 1992: 34]. Based on comparative materials from Alaska, we estimate now the Siberian form as a new species.

DISTRIBUTION. Northern Cisokhotia.

ETYMOLOGY. The species is named after the Russian zoologist Nicolas Dokutichev (Magadan), one of the collectors of type material.

Porhomma Simon, 1884

Porhomma longjiangensis Zhu & Wang, 1983: 148, ligs ab - (cσ').

Porhomma longjiangensis: Zhu et al., 1986: 207, fig. 3 (a-b) (cσ').

MATERIAL. 6 σ', 7 φ, Magadan Area, upper Kolyma River, Seimchan, 2-4.IX.1990 (leg. YM); 1 σ', 3 km S of Khasyu, Khasyu River, 5.X.1993 (leg. YM); 1 σ', Khabarovsk Prov., Bolshekhetskirsy Reserve, VI.1987 (leg. DL); 1 σ', 1 φ, Amur Distr., Ashan, 27.V.1987 (DK); 2 σ', 1 φ, lower Amur River, Mamylyzh, 23.VIII.1987 (leg. NR); 2 φ, Amurskaya Area, Arkhara Distr., Khiingan Reserve, VI.1990 (leg. GG).

DISTRIBUTION. Northeast Siberia, Russian Far East, and Manchuria. This species has been recorded both in Chinese [Zhu, Wang, 1983; Zhu et al., 1986] and Russian sides [Eskov, 1992a] of the Amur.
Figs. 49-53. *Pocelioneta (Acanthioneta) dobutchavii* sp. n. (49-51), and *Pocelioneta (Pocelioneta) theridiformis* (Emerton) (52-53): 49 — ♂ palp, ectal; 50 — ♂ palp, mesal; 51 — lamella characteristic, lateral; 52 — epigyne, frontal; 53 — epigyne, posterior. Scales = 0.1 mm.

Рис. 49-53. *Pocelioneta (Acanthioneta) dobutchavii* sp. n. (49-51) и *Pocelioneta (Pocelioneta) theridiformis* (Emerton) (52-53): 49 — палпы ♂, вид с внешней стороны; 50 — палпы ♂, вид с внутренней стороны; 51 — ламела, вид сбоку; 52 — эпигин, вид спереди; 53 — эпигина, вид сзади. Масштаб 0,1 мм.
region.

Saloca Simon, 1926

TAXONOMIC REMARKS. Wiehele [1960] pointed out similarities of both European Saloca species, i.e. S. diceros (O. P.-Cambridge, 1871) and S. kulczynskii Miller & Kratochvil, 1939, on the one hand, with the North American Horcotes quadricristatus (Emerton, 1882), on the other. Due to this reason, he argued the generic independence of Horcotes Crosby & Bishop, 1933: «die Gattung Horcotes erscheint überflüssig» [Wiehele, 1960: S.231]; however, the synonymy has not been formalized. Moreover, later this author described a new species, Horcotes niger Wiehele, 1965.

Millidge [1977] stated that the Siberio-Fennoscandian Saloca strandi (Sythesvskaja, 1935) (Scytotylylus strandi) in the original description is unrelated to the generotype, i.e. S. diceros, and belongs to a taxonomically distant genus-group. We agree with this opinion. On the other hand, congenerity of both Horcotes quadricristatus and Scytotylylus strandi appears to be beyond doubt [cp. Crosby, Bishop, 1933: figs 170-176, and Palmgren, 1976: fgs 11-14]. This opinion has been expressed by Dr. M.I. Saaristo (personal communication) as well. It should be noted that S. strandi has already been redescribed as a member of Horcotes, i.e. H. holmi Hackman, 1952.

To sum, we confirm the existence of two separate unrelated genera, i.e. Horcotes and Saloca. The first one belongs to the Walckenaeria-group of genera of Millidge [1977] and comprises two species, Horcotes quadricristatus and H. strandi (comb.n.), while the taxonomic position of the North American H. uncinatus Barrows, 1945, is still obscure. The second genus belongs to the Sawignya-group of genera of Millidge [1977] and comprises the European Saloca diceros (O. P.-Cambridge, 1872), S. kulczynskii Miller & Kratochvil, 1939, and S. nigra (Wiehele, 1965), comb.n. ex Horcotes, as well as the Siberian S. ryokin sp.n. At the same time, Saloca goropaniese Wunderlich, 1983 and S. khumbuense Wunderlich, 1983, both from the Himalaya Mountains, seem to belong in fact neither to Saloca nor to Horcotes [s. Wunderlich, 1983: fgs 65-70, 71-74].

Saloca ryokin sp.n.

Figs 54-60.

MATERIAL. Holotype, 6: Tuva Autonomous Republic, Selig-Khem River (basin of By-Khem River), 8 km upstream off mouth, 1,700 m in alt., swampy floodland Betula forest with Salix sp. and Spiraea sp., 11.VI.1992 (leg. AR). — Paratypes: 1 6, 3 6, together with holotype; 1 6, Evenk Autonomous Region, Central Siberian Reserve, Kulinga River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), floodland swamp with Carex and Epilobium, 30.VIII.1989 (leg. AR). Other materials: 1 subadult 6, Evenk Autonomous Region, Central Siberian Reserve, Dulkuma River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), 12.VII.1991 (leg. AR).

DESCRIPTION. Total 6/ 6 length 1.38-1.50/ 1.48-1.55. Carapace greyish-brown, its length/ width 0.65-0.70/0.48-0.50 in 6, 0.63-0.65/0.45-0.48 in 6; carapace as in Figs 54-56. Legs greyish-yellow, length of joints of legs I/IV 0.45/0.50+0.15/0.15+0.38/0.43+0.30/0.35+0.25/0.28 in 6, 0.43/0.48+0.15/0.15+0.33/0.40+0.28/0.30+0.25/0.25 in 6; tibial spines 2211; Tm I 10.60, Tm IV absent. Abdomen dark grey, almost black. Genitalia of both 6 and 6 as in Figs 57-60.

COMPARISON. By the shape of the 6 carapace and genitalia, as well as by the relatively large body size and dark coloration, the new species is extremely close to S. nigra (Wiehele, 1965), being distinguished by the large dorsal cephalic tooth of the 6 palpal tibia and concave clypeus of the 6 carapace [cp. Wiehele, 1965: fgs 5-13].

DISTRIBUTION. South and Central Siberia: East Sayan Mts. and Middle-Siberian Tableland.

ETYMOLOGY. The species is named after the Russian entomologist Alexandr B. Ryvkin (Moscow), the collector of type material.

Savignya Blackwall, 1833

Savignya basurkini Eskov, 1988

Figs 61-62.

Savignya basurkini Eskov, 1988: 27, fgs 53-59 (6, 6).
MATERIAL. 2 6, 7 6, Sakhalin Island, Okha Distr., Pihun Gulf, VI-VII.1991 (leg. AB).

REMARKS. This species displays polymorphism as regards the 6 carapace (cp. Figs 61 and 62), same as in Hybauchenidium aquilonare (L. Koch, 1879) [s. Holm, 1973: fgs 38-40], Dactylopiesthes diphys (Heimer, 1987) [Heimer, 1987: fgs 4-5], Walckenaeria nodosa (O. P.-Cambridge, 1873) (= W. mayumiae H. Saito, 1986), and Dactylopiesthes vido (Chamberlin & Ivie, 1947) (= D. komi Tanasevitch, 1984) [Eskov & Marusik, 1992b]. The genetic mechanism of such a type of polymorphism has been studied for the first time by Maelfait et al. [1990] upon Oedothorax tuberosus (Blackwall, 1841), which has proved to represent but a single species with different morphotypes, i.e. the 6 and 6 forms.
morph of O. gibbosus (Blackwall, 1841). This phenomenon may be supposed to be quite usual, but normally unrecognizable, in erigonines. For instance, Scotinotyulus magnificus Millidge, 1981, in which «the palp [...] is not distinguishable from that of S. majesticus. The ♀♀ of S. magnificus and S. majesticus appear to be structurally indistinguishable» [Millidge, 1981: 192], so the former taxon seems to be but a «carapace morph» of Scotinotyulus majesticus (Chamberlin & Ivie, 1947) (syn.n.).
«carapace morp» of *Sauignya basarukini* with a short and stout cephalic elevation (s. Fig 62) has been erroneously identified by Marusik, Eskov, Logunov, Basarukin [1993] as *S. pseudofofronata* Paik, 1978.

Scotinotylus Simon, 1884

Scotinotylus amurensis sp.n.

Figs 63-68.

DESCRIPTION. Total σ/$\ddot{\sigma}$ length 1.68-1.75. Carapace dark yellow, its length/width 0.93-0.96 in σ, 0.55/0.55 in $\ddot{\sigma}$; carapace as in Fig. 63. Legs dark yellow, length of joints of legs 1/I 0.63/0.66, 2/I 0.63/0.66, 3/I 0.63/0.66, 4/I 0.63/0.66. Abdomen pale grey. Genitalia of both σ and $\ddot{\sigma}$ as in Figs 64-68.

COMPARISON. The new species is closely related to the Nearctic *S. sacratus* Millidge, 1981 and *S. kolymsensis* sp.n. [ep. Millidge, 1981: figs 38-43, and Figs 69-72], being distinguished by the row of long setae on the mesal side of the cymbium as well as by the more or less triangular medial plate of the epignye.

DISTRIBUTION. The Russian Far East: middle flow of Amur River.

Scotinotylus kolymsensis sp.n.

Figs 69-72.

MATERIAL. Holotype, σ: Magadan Area, upper Kolyma River, Sibit-Tyelikh, dry betula forest on slope of a sopka (rocky hill) southern in exposure, 10.IX.84 (leg. KE). — Paratypes: 3 σ, 8 $\ddot{\sigma}$, together with holotype; 10 σ, 2 $\ddot{\sigma}$, same locality, VI-1983 (leg. YM); 2 σ, same locality, 10.IV-18.IX.1981 (leg. SB); 1 σ, 3 $\ddot{\sigma}$, same locality, dry hillocks in mossy Larix damarica forest, 19.VIII.1986 (leg. YM); 1 σ, 1 $\ddot{\sigma}$, same locality, Pinus pumila thicket along stream, 27.VIII.1986 (leg. DB); 4 σ, same locality, Pinus pumila thicket on dry slope of a sopka southern in exposure, 8.VIII.1986 (leg. YM); 7 σ, 11 $\ddot{\sigma}$, upper Kolyma River, Vetrenny, Khaliker Spring, 18.IX.1987 (leg. YM); 3 σ, 1 $\ddot{\sigma}$, Ust-Srednekam, 1-5.IX.1990 (leg. YM); 12 σ, 13 $\ddot{\sigma}$, Seimchan, 2-4.IX.1990 (leg. YM); 2 σ, 10 $\ddot{\sigma}$, Detrvin River (right tributary of Kolyma River), 56 km upstream off mouth, floodland forest of Populus and Chosenia, 29.VIII.1986 (leg. YM); 1 σ, 5 $\ddot{\sigma}$, northern Chugokhotia, upper Ola River, 15-18.VII.1992 (leg. YM); 2 σ, 4 $\ddot{\sigma}$, Lankovaya River (bass of Ola River), 59° 45' N, 152 E, 12-19.VIII.1992 (leg. YM); 1 $\ddot{\sigma}$, middle Chelomdziha River (left tributary of Taui River), 30.VI.1985 (leg. ND).

DESCRIPTION. Total σ/$\ddot{\sigma}$ length 1.73-1.90/1.93-2.03. Carapace dark yellow to greyish-yellow, its length/width 0.65/0.63 in σ, 0.58/0.55 in $\ddot{\sigma}$; leg length as in Fig. 69. Legs dark yellow, length of joints of legs 1/IV 0.63/0.66 or 0.63/0.65, 2/IV 0.63/0.65, 3/IV 0.58/0.55, 4/IV 0.58/0.55. Tibial spines 2221; Tm t 1.40, Tm IV absent. Abdomen pale grey. Genitalia of both σ and $\ddot{\sigma}$ as in Figs 70-72.

COMPARISON. The new species is closely related to the Siberio-Nearctic *S. alpinus* Banks, 1896, Nearctic *S. sacratus* Millidge, 1981, and *S. amurensis* sp.n. [ep. Millidge, 1981: figs 38-43, and Figs 63-68], being distinguished by the vertical frontinal surface of the cephalic elevation of the σ carapace, absence of the row of long setae on the mesal side of the cymbium as well as by the more or less trapezoid medial plate of the epignye.

DISTRIBUTION. Northeast Siberia; upper flow of Kolyma River and northern Chugokhotia.

Scotinotylus kimjooi sp.n.

Figs 73-78.

Scotinotylus gracilis, non Millidge, 1981: Eskov, 1992a: 57. MATERIAL. Holotype, σ: Sakhalin Island, Poroaisky Distr., upper Rukutama River, 17-27.IV.1988 (leg. AB). — Paratypes: 2 σ, 9 $\ddot{\sigma}$, together with holotype; 1 $\ddot{\sigma}$, Smirnykh Distr., upper Langheri River, 11.IX.1988 (leg. AB); 1 $\ddot{\sigma}$, Khabarovsk Prov., Nanaisky Distr., lower Amur River, Slavyanka, *Pinus koraiensis* forest, 9.X.1984 (leg. NR); 5 $\ddot{\sigma}$, Maritime Prov., Ussurisky State Reserve, forest of Quercus and *Pinus koraiensis*, 13.VII.1977 (leg. GK & EM); 1 $\ddot{\sigma}$, Supotsinsky State Reserve, Grabovaya Sopka, Abies forest, 23-25.V.1972 (leg. GK).

DESCRIPTION. Total σ/$\ddot{\sigma}$ length 1.85-1.90/1.80-2.15. Carapace brownish-yellow, its length/width 0.65 in σ, 0.58/0.55 in $\ddot{\sigma}$, carapace as in Fig. 73. Legs dark yellow, length of joints of legs 1/IV 0.63/0.65, 2/IV 0.63/0.65, 3/IV 0.58/0.58, 4/IV 0.58/0.58. Abdomen pale grey. Genitalia of both σ and $\ddot{\sigma}$ as in Figs 74-78.

COMPARISON. By the shape of the $\ddot{\sigma}$ genitalia, the new species is similar to *S. patellatus* (Emerton,
Figs. 63-72. Scotinotylus amurensis sp. n. (63-68), and Scotinotylus kolymensis sp. n. (69-72): 63, 69 — ♂ carapace, lateral; 65 — ♂ palp, ectal; 64, 70 — ♂ palp, mesial; 66 — ♂ palpal tibia, mesial; 67 — ♂ palpal tibia, dorsol; 68, 71 — epigyne, frontal; 72 — vulva. Scales = 0.1 mm.

Рис. 63-72. Scotinotylus amurensis sp. n. (63-68) и Scotinotylus kolymensis sp. n. (69-72): 63, 69 — карабаш ♂ , вид сбоку; 65 — палец ♂ , вид с внешней стороны; 64, 70 — палец ♂ , вид с внутренней стороны; 66 — голень пальца ♂ , вид с внутренней стороны; 67 — голень пальца ♂ , вид сверху; 68, 71 — эпигин, вид спереди; 72 — вульва. Масштаб 0,1 мм.
Figs. 73-83. Scutinotylus kimjoopli sp.n. (73-78), and Scutinotylus sacer (Crosby) (79-83): 73, 79 — ♀ carpace, lateral; 74, 80 — ♀ palp, ectal; 75, 81 — ♀ palpul tibia, dorsal; 76, 82 — epigyne, frontal; 77, 83 — epigyne, lateral; 78 — vulva. Scales = 0.1 mm.

Рис. 73-83. Scutinotylus kimjoopli sp.n. (73-78) и Scutinotylus sacer (Crosby) (79-83): 73, 79 — карапакс ♀, вид сбоку; 74, 80 — пальп ♀, вид с внешней стороны; 75, 81 — голень пальп ♀, вид сверху; 76, 82 — эпигин, вид спереди; 77, 83 — эпигин, вид сбоку; 78 — вульва. Масштаб 0,1 мм.
1917) and *S. gracilis* Millidge, 1981, both from the Pacific coast of North America, but it differs by the more elongated "tongue" of the epigyne [cp. Millidge, 1981: figs 61-63, 64-65]. By the shape of the♂ carapace and ♀ genitalia, *S. kimjoopili* sp.n. is similar to the Siberio-Neartic *S. sacer* (Crosby, 1929), but it differs by the frontally pointed palpal tibia without strong dorsal setae [cp. Holm, 1967: figs 10-13, and Figs 80-81]. Besides, the new species is distinguished by the position of the trichobothrii I more than 0.65.

DISTRIBUTION. The Russian Far East: northeastern Sakhalin, lower flow of Amur River, southern Maritime Province.

ETYMOLOGY. The species is named after the Korean arachnologist Kim Joo Pil.

Scoiotinotylus sacer (Crosby, 1929)
Figs 79-83.

Cochlemobolus sacer Crosby, 1929: 82, figs 8-10 (♂♂).

MATERIAL. 1 ♂♂, 9 ♀, Chukot Autonomous Region, Vulyvyeem River, mouth of Perevalny Spring (67°20'N, 178°E), 4-7.VIII.1988 (leg. YM); 1 ♀, Kamchatska Peninsula, basin of Kamchatka River, environs of Esso, UK-suchan River, *Pirus pumila* thicket, 16.VII.1991 (leg. TP); 1 ♀, Evenk Autonomous Region, Central-Siberian Reserve, Byrochana River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), forest of Abies, *Picea* and *Pirus sibirica* with green mosses, 4.VII.1988; 1 ♂, 5 ♀, upper Bakhta River (right tributary of Yenisei River), mouth of Kachikan River, 17.VIII.1991; 1 ♂♂, 3 ♀, basin of Bakhta River, Kaezoolo Lake, 2.VIII.1992 (all leg. AR).

DISTRIBUTION. Chukot and Kamchatska peninsulas, Middle-Siberian Tableland. This species has been recorded only in the northern Neartic (Alaska, northwestern Canada, Rocky Mts, western Greenland) [Millidge, 1981]. New to the Palearctic.

Semljicula Strand, 1906.

TAXONOMIC REMARKS. This genus was established by Strand [1906] to comprise solely *Erigone barbigerina* L. Koch, 1879, from Waigach Island. Later Holm [1973] attributed *E. barbigerina* to the genus *Eboria* Falconer, 1910, with fair confidence, noting that "As this name *Semljicula* has not been in use for 65 years and the junior name *Eboria* now is well established, the latter is to be regarded as valid" [Holm, 1973: 82]. This nomenclatorial reasoning [op. cit.] has been accepted as incorrect, so now the name *Eboria* is usually referred to as a junior synonym of *Semljicula* [e.g. Brignoli, 1983].

However, there has always been another reason for abstaining from the above synonymization. *Erigone barbigerina* is still known by a single ♂ holotype lacking both palps [Holm, 1973: 82], and the conclusion on its allocation within *Eboria* has been based solely on non-genitalic characters. So a possible non-congenericity of *E. barbigerina* and *E. caliginosa* Falconer, 1910 (the latter is the type species of *Eboria*) could not be refuted with complete certainty. Due to this reason, some authors [e.g. Eskov, 1981b] preferred to use the well-established name *Eboria*, applying it to all members of the genus but *E. barbigerina*, prior to a clarification of the generic status of the latter species, in particular by means of obtaining a toptype from from locus typicus.

It should be noted that Crawford [1988] suggested the synonymy of *E. barbigerina* and *Typhochreslus jeniseicus* Eskov, 1981. So long as the well-described genitalia of *T. jeniseicus* have nothing to do with ones of *Eboria* species, both *Semljicula* and *Eboria* were stated as valid names. However, the synonymization of *T. jeniseicus* under *E. barbigerina* has already been demonstrated as erroneous [s. Eskov, 1990: 52], and Dr. R.L. Crawford (personal letter of 6.XI.1990) has agreed with this opinion. So Crawford's [1988: 14] formal revalidation of *Eboria* is groundless.

Recently, the situation has finally become clarified. Firstly, one of the co-authors (KE) took part in a restudy of the *E. barbigerina* holotype (Naturhistoriska Riksmuseet, Stockholm, No.129) together with Dr. M.I. Saaristo, and we have both arrived to the conclusion that, by the shape of the carapace and long clypeal hairs, this species is indistinguishable from *Eboria assimilis* (Holm, 1945). Secondly, *E. assimilis* is known now as the only species of *Eboria* found on Waigach Island, both in ancient and new collections. This permits us to conclude that *E. barbigerina* is a senior synonym of *E. assimilis* (syn.n.), and the name *Semljicula* is indeed a senior synonym of *Eboria*.

Semljicula barbigerina (L. Koch, 1879)
Erigone barbigerina Koch, 1879: 65, Tab.2, figs 16-16a (♂♂).
Semljicula barbigerina: Strand, 1906: 634.
Rheacothorax assimilis Holm, 1945: 17, figs 3b, 4c-d (♂♂, ♀♀) (syn.n.).
Eboria assimilis: Holm, 1963: 275, figs 4a-g (♂♂, ♀♀) (syn.n.).
Erigone barbigerina: Holm, 1973: 82: fig. 29 (♂♂).

MATERIAL. 1 ♂♂, 3 ♀♀, Nenets Autonomous Region, Waigach Island, Talata River, 15.VII.1987 (leg. VIB); 3 ♂♂, 14 ♀♀, Kazakhstan, environs of Alina-Ata, subalpine belt of Zailisky Alatau Mts. Range, source of Malay Almatinka River, 2,600 m alt., small peat bog along
stream, 1-2 IX.1922 (leg. KE).

Sibirocyba gen. n.

TYPE SPECIES. *Tapinocyba incerta* Kulczynski, 1916.

DEFINITION. Small, pale coloured erigonines. ♂ carapace without postocular pits, flat, without any elevation in its cephalic portion; eyes small. Chelicerae unmodified, with 4 promarginal teeth. Tibial spines 1111, Tm I 0.50, Tm IV absent. Abdomen unmodified, concolorous.

TAXONOMIC REMARKS. The new genus belongs to the *Tmeticus*-group of genera of Millidge [1977], but it is clearly distinguished from all its members by the tibial spine formula 1111.

COMPOSITION AND DISTRIBUTION. Only the type-species, *T. incerta* Kulczynski, 1916, from northern Siberia (comb. n.),

ETYMOLOGY. From Siberia and the generic name *Erigone*.

Sibirocyba incerta (Kulczynski, 1916), comb. n.

Figs 34-37.

DESCRIPTION. Total ♂/♀ length 1.45-1.55/1.75-2.00. Carapace yellow, its length/width 0.58-0.65/0.45-0.50 in ♂, 0.63-0.75/0.50-0.58 in ♀; ♂ carapace as in Fig. 34. Legs yellow, length of joints of legs 1/IV 0.45/0.50+0.18/0.18+0.35/0.45+0.30/0.35+0.28/0.30 in ♂, 0.50/0.58+0.20/0.20+0.38/0.50+0.33/0.40+0.30/0.33 in ♀. Abdomen dirty-white. Genitalia of both ♂ and ♀ as in Figs 35-37.

DISTRIBUTION. Northern Siberia from Chukot Peninsula in the east up to the Urals in the west [Kulczynski, 1916; Eskov, 1988a; Marusik et al., 1992; Marusik, Eskov, Koponen, Vinokurov, 1993]. The species seems to be restricted to the hypoarctic belt, mainly to its mountain regions (Polar Urals, Putoran Plateau, Cherskogo Mt. Range, Chukot mountains).

Silometopoides Eskov, 1990

Silometopoides sachalinensis sp. n.

Figs 90-94.

— Paratypes: 2 ♂, 3 ♀, together with holotype.

DESCRIPTION. Total ♂/♀ length 1.43-1.50/1.50-1.75. Carapace light brown, its length/width 0.63-0.68/0.55-0.58 in ♂, 0.63-0.65/0.53-0.55 in ♀; ♂ carapace as in Fig. 90. Legs brownish-yellow, thick (tibia I/IV 4.6), length of joints of legs 1/IV 0.45/0.55+0.18/0.18+0.33/0.40+0.28/0.33+0.23/0.25 in ♂, 0.43/0.48+0.18/0.18+0.33/0.40+0.25/0.33+0.25/0.25 in ♀. Femur I in ♂ with several short ventral spines in its distal portion; tibial spines 1111, extremely short in ♂; Tm I 10.66, Tm IV absent. Abdomen grey. Genitalia of both ♂ and ♀ as in Figs 91-94.

COMPARISON. The new species is clearly distinguished from all congeners by the short hook-like dorsal frontal projection of the ♂ palpal tibia and the unilobated medial plate of the epigyne [cp. Eskov & Marusik, 1992b: figs 1-6, 10-12] as well as by the trichobothrial pattern (Tm I position less than 0.7, Tm IV absent).

DISTRIBUTION. The Russian Far East: northern Sakhalin.

Silometopus Simon, 1926.

Silometopus koponen sp. n.

Figs 84-89.

MATERIAL. Holotype, ♂: Yakut Autonomous Republic, upper Otto-Sala River (right tributary of Dulugulakh River, basin of Yana River), 9. VII.1989 (leg. NV). — Paratypes: 1 ♂, together with holotype; 5 ♂, 37 ♀, Magadan Area, source of Kolyma River, Kontakovsky Spring (right tributary of Kula River) (61°40’N, 143°30’E), VI-VII.1987 (leg. SB); 2 ♀, same locality, 850 m alt., shingle bank of stream, 11. VIII.1986 (leg. YM); 1 ♂, upper Kolyma River, Sbit-Tyelakh, 2-16. VII.1987 (leg. VT); 1 ♂, same locality, source of Kunebelyak River, subalpine belt of Bolshoi Annachag Mt. Range, 1,100 m alt., mountain tundra, under stones, 27. VII.1989 (leg. YM); 1 ♀, same locality, subalpine belt of Bolshoi Annachag Mt. Range, Vlasy Mt., 1,100 m alt., gravelly slope with sparse Carex vegetation, 16-27. VII.1987 (leg. DB & VT).

DESCRIPTION. Total ♂/♀ length 1.63-1.75/
Figs. 84-94. *Silometopus koponeni* sp.n. (84-89), and *Silometopoides sachalinensis* sp.n. (90-94): 84, 90 — ♂ carapace, lateral; 85 — ♀ carapace, lateral; 86, 91 — ♂ palp, ectal; 87 — ♂ palpal tibia, dorsal; 92 — ♂ palpal tibia, mesal; 88, 93 — epigyne, frontal; 89, 94 — vulva. Scales = 0.1 mm.

Рис. 84-94. *Silometopus koponeni* sp.n. (84-89) и *Silometopoides sachalinensis* sp.n. (90-94): 84, 90 — карапакс ♂, вид сбоку; 85 — карапакс ♀, вид сбоку; 86, 91 — палп ♂, вид с внешней стороны; 87 — голень пальп ♂, вид спереди; 92 — голень пальп ♀, вид с внутренней стороны; 88, 93 — эпигин, вид спереди; 89, 94 — вульва. Масштаб 0,1 мм.
1.88-2.00. Carapace brown with a greyish-brown medial spot and radial stripes, its length/width 0.68-0.70/0.63-0.65 in ♂, 0.65-0.75/0.58-0.63 in ♀; carapace of both ♂ and ♀ as in Figs 84 and 85. Legs brownish-yellow, length of joints of legs 1/IV 0.50/0.63+0.20/0.20+0.43/0.55+0.33/0.40+0.28/0.30 in ♂, 0.53/0.63+0.20/0.20+0.48/0.55+0.33/0.40+0.25/0.30 in ♀; tibial spines 1111, extremely short in ♂; Tm I 0.70, Tm IV absent. Abdomen dark grey. Genitalia of both ♂ and ♀ as in Figs 86-89.

COMPARISON. The new species is closely related to the Siberian species S. uralensis Tanasevitch, 1985 and S. sibiricus Eskov, 1989, being distinguished by the long, sharp and curved outgrowth of the ♂ palpal tibia as well as by the subquadrate medial plate of the epigyne [cp. Tanasevitch, 1985: figs 1-3, 8-9, and Eskov, 1989: figs 39-42].

DISTRIBUTION. Mountains of Northeast Siberia: Verkhoyansky and Cherskogo mountain ranges.

ETYMOLOGY. The species is named after the Finnish arachnologist Seppo Koponen.

Walckenaeria Blackwall, 1833

Walckenaeria (Wideria) basarukini sp.n.

Figs 95-99.

DESCRIPTION. Total length 2.80-2.95/2.93. Carapace reddish-brown, its length/width 1.23-1.30/0.88-0.90 in ♂, 1.28/0.85 in ♀; carapace as in Fig. 95. Legs brownish-yellow, length of joints of legs 1/IV 1.00/1.05+0.20/0.23+0.83/0.93+0.73/0.80+0.48/0.53 in ♂, 1.03/1.08+0.23+0.90/0.98+0.75/0.85+0.48/0.53 in ♀; tibial spines 2111; Tm I 0.48. Tm IV present. Abdomen grey. Genitalia of both ♂ and ♀ as in Figs 96-99.

COMPARISON. By the shape of both ♂ and ♀ genitalia, the new species seems to be closely related to the European W. mitrata (Menge, 1868) [cp. Wiehle, 1960: figs 224, 226, 230-232], while by the shape of the ♂ carapace it is similar to the Euro-Siberian W. capito (Westring, 1851) [Wiehle, 1960: fig. 236]. W. basarukini sp.n. is distinguished by the short ♂ carapace lobe bearing the PME, by the distinct outgrowth of the mesofrontal process of the ♂ palpal tibia, and by the more concave posterior edge of the medial plate of the epigyne.

DISTRIBUTION. The Russian Far East: northern Sakhalin Island.

ETYMOLOGY. The species is named after the Russian zoologist Anatoly B. Basarukin (Yuzhno-Sakhalinsk), collector of type material.

Walckenaeria (Wideria) fraudatrix Millidge, 1983

Figs 106-108.

Walckenaeria fraudatrix: Millidge, 1983: 198, figs 298-300 (♀). MATERIAL. 1 ♂, 2 ♀, Krasnoyarsk Prov., middle Yenisei River, 35 km E of Mirnoye (62°20'N), Varlamovka River, 1-3.IX.1979 (leg. KE); 1 ♂, Evenk Autonomous Region, Taimura River (left tributary of Nizhnaya Tunguska River), mouth of Chambere River, 17.VIII.1982 (leg. KE); 1 ♂, 1 ♀, Magadan Area, upper Kolyma River, Sibit-Tyelakh, 28.V.1983 (leg. YM); 1 ♂, Chita Area, Kyra Distr., Sokhondo Reserve, upper Ingoda River, 8.VI.1991 (leg. DL); 1 ♂, 2 ♀, Khabarovsk Prov., 35 km S of Khabarovsk, Bolshe-Khekhtsirsky Reserve, VI.1987 (leg. DL); 2 ♀, Sakhalin Island, environs of Yuzhno-Sakhalin, Dolina Turistov, 25.IX.1988 (leg. AB).

DISTRIBUTION. Siberia: from Yenisei River in the west up to Kolyma River and Alaska in the east, in the south up to southern Transbaikalia, Amur River and southern Sakhalin [s. Millidge, 1983; Eskov, 1988a; 1991; Marusik et al., 1992; Marusik, Eskov, Logunov, Basarukin, 1993].

REMARKS. This species seems to be an East-Palaearctic vicariant of its closest relative, the Euro-West Siberian W. antica (Wider, 1834). The latter species has not been recorded by us east of the Yenisei zoogeographical border. Due to this reason, we estimate all records of W. antica in the Russian Far East [Strand, 1907] as well as in Japan [Yaginuma, 1977], Korea [Kim, 1991], China [Zhu, 1983] and Mongolia [Loks, 1965] as dubious, supposedly actually representing either W. fraudatrix and/or, this being less probable, W. golovatchi sp.n.

Walckenaeria (Wideria) golovatchi sp.n.

Figs 100-105.

New data on North Asian Linyphiidae

Figs. 95-99. *Walckenaeria (Wideria) basarabini* sp. n.: 95 — ♂ carapace, lateral; 96 — ♀ palp, ectal; 97 — ♀ palpal tibia, dorsal; 98 — epigyne, frontal; 99 — vulva. Scales = 0.1 mm.

Рис. 95-99. *Walckenaeria (Wideria) basarabini* sp. n.: 95 — carapace, ♂, вид сбоку; 96 — palp ♀, вид с внешней стороны; 97 — гопль палп ♀, вид сбоку; 98 — эпигин, вид спереди; 99 — вульва. Масштаб 0,1 мм.

DESCRIPTION. Total ♀/♂ length 2.75-2.95/2.98-3.25. Carapace brownish-orange, its length/width 1.28-1.33/1.00-1.03 in ♀, 1.33-1.43/0.95-1.00 in ♀; ♀ carapace as in Fig. 100. Legs brightly coloured: Fe brownish-orange, Pt and Ti yellowish-grey, M and Ta yellow; length of joints of legs I/IV 1.13/1.20+0.33/0.33+1.03/1.15+0.95/1.03+0.53/0.58 in ♀, 1.18/1.23+0.35/0.35+1.05/1.18+0.90/1.10+0.58/0.60 in ♀; tibial spines 2211; Tm I 0.70, Tm IV present. Abdomen dark grey. Genitalia of both ♀ and ♂ as in Figs 101-105.

COMPARISON. The new species is closely related to *W. antica* (Wider, 1834) [cp. Wiehle, 1960: figs. 191-198] and *W. fraudatrix* (Millidge, 1983) [cp. Millidge, 1983: fig. 298, and Figs 106-108]. *W. golovatchi* sp. n. is distinguished by the more strongly flattened top of the ♀ carapace elevation, shape of the mesal outgrowth of the ♀ palpal tibia and short medial plate of the epigyne, as well as by the large body size and bright body coloration.

DISTRIBUTION. The Russian Far East: southern Kurile Islands (Kunashir and Iturup), Sakhalin Island (both northern and southern), Ussuri River basin.

ETYMOLOGY. The species is named after the Russian myriapodologist Sergei I. Golovatch (Moscow), one of the collectors of type material.
Figs. 100-110. Walkenaeria (Wideria) golovatchi sp.n. (100-105), Walkenaeria (Wideria) fraudatrix Millidge (106-108), and Zerogone submissella (Strand) (109-110): 100, 106 — ♂ campace, lateral; 101 — ♂ palp, ectal; 102 — ♂ palpal tibia, dorsal; 103, 107 — ♂ palpal tibia, dorsoectal; 104, 108, 109 — epigyne, frontal; 110 — epigyne, posterior; 105 — vulva. Scales = 0.1 mm.

Рис. 100-110. Walkenaeria (Wideria) golovatchi sp.n. (100-105), Walkenaeria (Wideria) fraudatrix Millidge (106-108) и Zerogone submissella (Strand) (109-110): 100, 106 — кампаци ♂, вид сбоку; 101 — пальп ♂, вид с внутренней стороны; 102 — голова пальцы ♂, вид сверху; 103, 107 — голова пальцы ♂, вид сверху-снизу; 104, 108, 109 — эпигин, вид спереди; 110 — эпигин, вид сбоку; 105 — вульва. Масштаб 0,1 мм.
Figs. 111-120. Walckenaeria (Cornicularia) tystchenkoii sp.n. (111-115), and Walckenaeria (Trachynella) palmgreni sp.n. (116-120): 111, 116 — ♂ cernpace, lateral; 112, 117 — ♂ palp, ectal; 113, 118 — ♂ palpal tibia, dorsal; 114, 119 — epigyne, frontal; 115, 120 — vulva. Scales = 0.1 mm.

Рис. 111-120. Walckenaeria (Cornicularia) tystchenkoii sp.n. (111-115) и Walckenaeria (Trachynella) palmgreni sp.n. (116-120): 111, 116 — картиночка ♂, вид сбоку; 112, 117 — пальцы ♂, вид с внешней стороны; 113, 118 — гомель пальца ♂, вид сверху; 114, 119 — эпигинум, вид спереди; 115, 120 — вульва. Масштаб 0,1 мм.
Walckenaeria (Trachynella) palmgreni sp.n.
Figs 116-120.

MATERIAL. Holotype: C: Krasnoyarsk Prov., middle flow of Yenisei River, 35 km E of Minnoye (62°20'N), Varlamovka River, forestless Sphagnum-Aulacomnium bog with Betula nana, 1-4.IX.1979 (leg. KE). — Paratypes: 1 C, 5 Q, together with holotype; 2 C, 4 Q, Evnek Autonomous Region, Taimura River (left tributary of Nizhnyaya Tunguska River), mouth of Chambe River, floodland Carex swamp, 18.VIII.1982 (leg. KE); 2 Q, same locality, boggy Larix dahurica forest, 19-20.VIII.1982 (leg. KE), 4 Q, Taimyr Autonomous Region, Putorana Plateau, Ayen Lake, mouth of Kapchug River, boggy Larix dahurica forest, 22.VI.1983 (leg. KE), 3 Q, Yakut Autonomous Republic, Kemptendai River (right tributary of Vilyui River), 80 km upstream off mouth, forestless Sphagnum-Aulacomnium bog with Betula nana, 12-13.VIII.1988 (leg. KE); 1 C, Aldan River (right tributary of Lena River), Khsndyga, 1.IX.1990 (leg. IS); 2 Q, 7 Q, Magadan Area, upper Kolyma River, Sibit-Tyelikh, VI-VIII.1985 (leg. YM); 1 C, 5 Q, same locality, VI-VIII.1986 (leg YM); 1 C, 1 Q, same locality, Abraus fruticosus thicket with Gramineae along stream, 19.IX.1986 (leg YM); 3 Q, same locality, Larix dahurica forest, 7-17.VI.1983 (leg SB); 1 C, 1 Q, same locality, boggy Larix dahurica forest, IX.1983 (leg SB); 1 C, 2 Q, same habitat, 20.V-20.VI.1984 (leg IG); 2 Q, same locality, Carex swamp in floodland of Kolyma River, 7-27.VII.1984 (leg IG); 1 Q, same locality, alpine belt of Bolshoi Annachag Mt. Range, 1400 m alt., dry bed of spring, under stones, 5.IX.1986 (leg YM); 1 Q, Kolyma River 10 km upstream off Vetrenny, Abraus fruticosus with Sphagnum along stream, 5.VIII.1984 (leg KE); 1 Q, Detrin River (right tributary of Kolyma River), 56 km upstream off mouth, Vakhanka Spring, boggy Larix dahurica forest, 29.VIII.1986 (leg YM); 4 C, 7 Q, 12 km N of Magadan, Snezhnaya Dolina, valley of Dukcha River, 23.IX.1993 (leg YM); 1 C, 2 Q, Chukot Autonomous Region, Anguema Village, (67°08'N, 178°58'W), swamp with Carex and mosses, 22.VIII.1988 (leg YM); 1 Q, Vulyveyem River (66°55'N, 178°30'E), swampy bank of lake, 13.VI.1988 (leg YM); 1 Q, Kharbarovsk Prov., Okhotsk Dist., Ulyas River, mouth of Amka River, Abraus fruticosus thicket, 18.VIII.1987 (leg VZ & IS); 2 Q, 35 km S of Kharbarovsk, Bolshe-Khekhtsiansky Reserve, V1.1987 (leg DL); 1 Q, Mongolia, Selenga Aimak, environs of Shamar, floodland swamp near Orkhoon River, 17.VII.1990 (leg EV).

DESCRIPTION. Total of female: 2.18-2.30/2.25-2.40. Carapace brownish-orange, its length/width 0.83-0.93/0.65-0.73 in C, 0.85-0.88/0.70-0.73 in Q, carapace as in Fig. 111. Legs dark yellow, length of joints of legs I/IV 0.73/0.78+0.23/0.23+0.65/0.70+0.48/0.58+0.38/0.43 in C, 0.73/0.78+0.23/0.23+0.60/0.68+0.45/0.55+0.35/0.38 in Q; tibial spines 2211; Tm I 0.55, Tm IV present. Abdomen grey to dark grey. Genitalia of both C and Q as in Figs 117-120.

COMPARISON. By the shape of the C genitalia, the new species is similar to W. obtusa (Westring, 1851) [cp. Wiehle, 1960: figs 298-300], while by the shape of the epigyne it is similar to W. castanea (Emerton, 1882) (= Trachynella longidens Holm, 1962) [cp. Millidge, 1983: fig. 96]. W. palmgreni sp.n. differs by the medially situated tooth on the ectal branch of the C palpal tibia, non-concave posterior edge of the medial plate of the epigyne as well as by the clypeus of the C carapace pubescent, and by the small body size.

DISTRIBUTION. Siberia: from Yenisei River in the west up to the coast of the Sea of Okhotsk in the east, and from Chukot Peninsula and Putorana Mountains in the north up to Amur River and northern Mongolia in the south.

ETYMOLOGY. The species is named after the Finnish arachnologist Pontus Palmgren.

Walckenaeria (Cornicularia) tysthenkoi sp.n.
Figs 111-115.

DESCRIPTION. Total C/Q length 2.18-2.30/2.25-2.40. Carapace brownish-orange, its length/width 0.83-0.93/0.65-0.73 in C, 0.85-0.88/0.70-0.73 in Q, carapace as in Fig. 111. Legs dark yellow, length of joints of legs I/IV 0.73/0.78+0.23/0.23+0.65/0.70+0.48/0.58+0.38/0.43 in C, 0.73/0.78+0.23/0.23+0.60/0.68+0.45/0.55+0.35/0.38 in Q; tibial spines 2211; Tm I 0.50, Tm IV present. Abdomen grey to dark grey. Genitalia of both C and Q as in Figs 112-115.

COMPARISON. By the shape of the C carapace and both C and Q genitalia, the new species is similar to W. vigilax (Blackwall, 1853) [cp. Wiehle, 1960: figs. 269-276] and W. pictetorum Palmgren, 1976 [cp. Palmgren, 1976: figs. 21 (11-12)]. W. tysthenkoi sp.n. is distinguished by the swollen clypeus of the C carapace provided by numerous long bristles, truncated C palpal tibial process and trapeziform median plate of the epigyne supplied with two lateral tubercles.

DISTRIBUTION. Okhotsk Sea coasts: northern Chukotka and northern Sakhalin Island.
ETIMOLOGY. The species is named after the outstanding Russian arachnologist Viktor P. Tyst-
shenko.

Zerogone gen.n.

TYPE SPECIES. Oedotheorax submissellus
Strand, 1907.

DEFINITION. Small, pale coloured erigonines. ♀
carapace slightly elevated in its cephalic portion;
eyes medium-sized. Cephalic of ♀ unmodified, with
4 promarginal teeth. Tibal spine in a single known
specimen lost, their remnants seem to be 1111, Tm
1 0.70, Tm IV present. Abdomen unmodified, con-
colorous.

Palpal tibia with one trichobothrium. Epigyne
slightly protruded, with a small, rounded, posterior-
ly situated medial plate. Vulva with large, ovoid,
amost contiguous receptacula and moderately long
and direct entrance ducts. Structure of ♀ genitalia
still unknown.

TAXONOMIC REMARKS. The status of the
new genus is still unclear, but in any case it has
nothing to do with Oedotheorax Bertkau, 1883,
wherein the type species was allocated initially.
Close relations to the genus Tapinocyba Simon,
1884 can be supposed, but the discovery of ♀
specimens is necessary for a final conclusion.

COMPOSITION AND DISTRIBUTION. Only
the type-species, O. submissellus Strand, 1907,
from the Russian Far East (comb.n.).

ETYMOLOGY. From «zero» and the generic
name Erigone.

Zerogone submissella (Strand, 1907), comb.n.
Figs 109-110.

Oedotheorax submissellus Strand, 1907: 139, fig. 17 (♀).

MATERIAL. 1 ♀ (Holotype: Zoologisches Museum,
Universität Hamburg, Blagowestensk (Amur), 1884
(leg. Cordes).

DESCRIPTION. Total ♀ length 2.00. Carapace
yellow, its ♀ length/width 0.93/0.68. Legs yellow,
length of joints of legs I/IV 0.63/0.73+0.20/
0.20+0.55/0.65+0.53/0.63+0.33/0.38 in ♀. Ab-
domen dirty-white. Genitalia of ♀ as in Figs 109-110.

DISTRIBUTION. Russian Far East (middle flow
of Amur River).

2. New synonyms and new combinations.

Batchephyantes colletti (Strand, 1899) = Kaest-
neria pullata (O. P.-Cambridge, 1863), syn.n.

Caepheantes glumaceus Gao, Fei & Zhu, 1992
= Bishopiana glumacea (Gao, Fei & Zhu), comb.n.

Erigone sibiriana Keyserling, 1886 = Onatho-
narion suppositum (Kulczynski, 1885), syn.n.

Hybauchenidiun progradalis (Holm, 1945) =
Micyphantes ferrumequinum Grube, 1861, syn.n. =
Hybauchenidiun ferrumequinum (Grube), comb.n.
The holotype of Micyphantes ferrume-
quinum (collection of the Zoological Institute, St.-
Petersburg, No. 2325), has been revised.

Lasiargus laricetorum Eskov, 1989 = Lasiarg-
us pilipes (Kulczynski, 1908), syn.n.

Liniphy praebescens L. Koch, 1879 = Porphy-
oma hebecens (L. Koch), comb.n. = Liniphy
 desolata L. Koch, 1879, syn.n. = Erigone formosa
L. Koch, 1879, syn.n. = Porhromma montanum
Jackson, 1913, syn.n. This synonymy has first been
stated by Holm [1973]. However, he attempted to
conservate a junior but well-established name, P.
montanum, and due to this reason he indicated L.
hebecens, L. desolata and E. formosa as new
junior synonyms. According to the new version of
Article 23b of the ICZN [1983], priority of Koch's
names must be restored. As Holm [1973] did not
select any of these three names, we use here the
Principle of the First Reviser and fix Liniphy
hebecens as the valid name.

Maxilliodens Zhu & Zhou, 1992 = Caviphantes
Oi, 1960, syn.n.

Mecynargus jalalesis (Eskov, 1981) = Mecy-
argus sphagnicola (Holm, 1939), syn.n. These
species are known as distinguished only by the
shape of the terminal portion of the embolus di-
vision, this being thin and curved in M. sphagnicola,
and thick and abrupt in M. jalalesis [cp. Holm, 1967:
fig. 68, and Eskov, 1981: fig. 2, 1-4]. For a long
time we kept these species separately, treating as
sometimes sympatric forms [e.g. Marusik et al.,
1992]. However, recently we have found a ♀
specimen in which the left and right palps correspond
to M. sphagnicola and M. jalalesis, respectively.
So we suggest «M. jalalesis» as actually
representing ♀♂ with the terminal portion of the
embolus broken off, perhaps during copulation.

Nanacea Chamberlin & Ivie, 1933 = Leptorhop-
tram Kulczynski, 1894, syn.n.

Nanacea monticola Chamberlin & Ivie, 1933 =
Leptorhoptrum robustum (Westring, 1851), syn.n.

Oedotheorax longistriatus Fei & Zhu, 1992 =
Gongylidioides ussuricus Eskov, 1992, syn.n. The
publication of Eskov [1992b] was printed in the July
of 1992. We have failed to elucidate the exact date
of the publication by Fei & Zhu [1992] but, due
to its apparition in No. 6 of a periodical possessing six
issues per year, the November or December of 1992
are much more likely as the date of publication.
Styloctetor simplex Kulczynski, 1908 = Semtiocota simplex (Kulczynski), comb.n.

3. Misidentifications.

1. Marusik, Eskov, Koponen, Vinokurov [1993] have stated that all records of Agyneta nigripes (Simon, 1884) in Northeast Siberia by Marusik et al. [1992] refer to Agyneta maritima (Emerton, 1919). However, several specimens from Wrangel Island (Gusinaya River) do belong to A. nigripes.

2. Holm [1973] has stated that Koch’s [1879] record of Agyneta raresris (C.L. Koch, 1836) in Novaya Zemlya actually refers to A. nigripes (Simon, 1884). In another case, A. raresris was listed from Novaya Zemlya by Dahl [1928]. The latter record is a doubtful misidentification, referable in fact to A. nigripes as well.

3. The record of Agyneta subtilis (O. P.-Cambridge, 1863) in Transbaikalia, judged from Izmailova’s figures [1989: fig. 46], seems to refer to A. coniger (O. P.-Cambridge, 1863).

7. The record of Centromerita concinna (Thorell, 1875) in Irkutsk [Izmailova, 1989] is a doubtful misidentification. Based on the redescription and figures of Izmailova [1989: fig. 48], it should be actually referred to a Theridium sp. (family Theridiidae).

8. The record of Centromerus prudens (O. P.-Cambridge, 1873) in Transbaikalia [Izmailova, 1989] is a doubtful misidentification. Based on Izmailova’s [1989: p. 70] redescription, Allomengea scopigerata (Grube, 1859) may be supposed as being actually involved.

10. Re-identification of Erigone brachyopis L. Koch, 1879, is impossible due to the loss of the holotype [Holm, 1973]; this name should be referred to as a nomen dubium.

11. The record of Erigone psychrophila Thorell, 1872, in the low altitudes of the southern Urals [Pakhorkov & Elinnik, 1988] is a doubtful misidentification. Instead, E. simillima Keyserling, 1886, can be supposed as an alternative. Unfortunately, this material has not been found in the collection of the Perm University (S.L. Esyunin, personal letter).

12. The record of Erigone remota L. Koch, 1869, from southern West Siberia [Ermolaev, 1930] seems to be a misidentification. Instead, E. hypoarctica Eskov, 1989 can be supposed as being actually involved.

13. The record of Erigone sibirica Kulczynski, 1908 in Transbaikalia [Izmailova, 1989] is a doubtful misidentification. Based on the redescription and figures of Izmailova [1989: fig. 63], it should be referred to E. atra Blackwall, 1833.

15. The records of Hypselistes semiflavus (L. Koch, 1879), from the northern Urals [Pakhorkov, 1977; 1984] actually refer to H. jacksoni O. P.-Cambridge, 1902. This identification is based on Kulczynski’s [1916: figs. 6-9] figures of H. semiflavus which actually illustrate H. jacksoni [s. Holm, 1973; 87]. Due to a dubious reason, Pakhorkov [1977] considered H. jacksoni and H. semiflavus as synonyms, referring to Holm’s [1973] opinion; the latter author, on the contrary, had regarded these species as different.

17. Tanasevitch & Eskov [1987] have concluded that Lepthyphantes terrenus (L. Koch, 1879) was based on a subadult holotype and, due to this reason, this name is a nomen dubium. This conclusion has proved to be incorrect: L. terrenus is a good species (sp. revalid.). Moreover, Saaristo (personal communication) has just discovered that the record of L. quadriramulatus Kulczynski, 1898 in southern Siberia (Khakassia) [Eskov, 1992e] refers in fact to L. terrenus.

18. The record of Lynphia hortensis Sundevall, 1830 in Irkutsk [Izmailova, 1989] is a doubtful
misidentification. Based on the redescription and figures of Izmailova [1989: fig. 53], it refers in fact to *Pityohyphantes phrygianus* (C.L. Koch, 1836). The same misidentification may be supposed for the record of *L. hortensis* at Angara River [Izmailova & Verzhutsky, 1981].

19. The record of *Maro minutus* O. P.-Cambridge, 1906 in Irkutsk [Izmailova, 1989] is a doubtless misidentification. Based on the redescription and figures of Izmailova [1989: fig. 60], it refers to *Allomengea dentisetis* (Grube, 1861).

21. Due to a typographic error, Eskov's [1986] literature records of *Notioscusps jamalensis* Grese, 1909, were erroneously listed in the column «Chukotka & Commander Isls.» instead of «Southern Yamal & Polar Urals».

22. The record of *Oedothorax fuscus* (Blackwall, 1841) from Krasnoyarsk [Sternbergs, 1977], based on a ♀ specimen, seems to be a misidentification. *O. retusus* (Westring, 1851) can be supposed as an alternative.

23. The record of *Oreonetides abnormis* (Blackwall, 1841) in Transbaikalia [Sternbergs, 1981] seems to be a misidentification; *O. helsdingenii* Eskov, 1884 can be supposed as an alternative. Sternberg's record was listed by Izmailova [1989] and Danilov [1990] as well.

24. The record of *Poecilioneta variegata* (Wider, 1834) in the Polar Urals [Kulczynski, 1916] was considered by Eskov [1985] as a probable misidentification, instead this material was ascribed to *P. pallida* Kulczynski, 1908, with the necessary qualifications. Now the presence of *P. variegata* in the Polar Urals has been confirmed by Tanasevitch [1985]. Due to this reason, we reject the above idea about the possible misidentification by Kulczynski [op. cit.].

25. The record of *Porromma errans* (Blackwall, 1841) in Kamchatka Peninsula [Kulczynski, 1885] seems to be a misidentification, instead *P. borealis* Banks, 1899 (= *P. nunamo* Holm, 1970) can be supposed as being actually involved.

26. The record of *Stenomphantes lineatus* (Linne, 1758) in Irkutsk [Izmailova, 1989] seems a misidentification. According to the description and figures of Izmailova [1989: fig. 62], *S. conspersus* (L. Koch, 1879) can rather be supposed as being actually involved.

27. All records of *Tmelicus affinis* (Blackwall, 1855) in the tundra zone, i.e. southern Yamal Peninsula [Eskov, 1986] and Chukot Peninsula [Marusik et al., 1992], should be referred to *T. nigriceps* Kulczynski, 1916.

28. All records of *Walckenaeria castanea* (Emerton, 1882) in the Russian Far East (Badzhal Mt. Range and southern Maritime Province) [Eskov, 1992a] should be referred to *W. obtusa* Blackwall, 1836.

30. Based on the literature record, Izmailova [1989] listed *Corninaria karpinskii* (O. P.-Cambridge, 1873) and *Wideria karpinskii* (O. P.-Cambridge, 1873) as two different forms inhabiting Transbaikalia. This is wrong, being referred in fact to *Walckenaeria* (*Corninaria*) *karpinskii* (O. P.-Cambridge, 1873) (*Erigone* (*Walckenaeria*) *Karpinskii* in the original description), and *Leptophyantes karpinskii* (O. P.-Cambridge, 1873) (*Linophia Karpinskii* in the original description), respectively.

4. New faunistic records.

Agyneta brusnepi (Kulczynski, 1908). 1 ♂, Taimyr Autonomous Region, western point of Byrranga Mts., Kosoturki Lake, 6.VII.1986 (leg. ABB).

Agyneta similis (Kulczynski, 1926). 1 ♂, Nov-
osibirsk Area, Toguchino Distr., Mirnyi, VIII.1984 (leg. VB).

Allomenega scopigera (Grube, 1859). 1 ♀, Kemerovo Area, Kuznetsky Alatau Reserve, ca. 20 km SW of Belogorsk, 26.VIII-5.IX.1993 (SG & VG).

Bathylinophia major (Kulczynski, 1885). 1 ♂, Kemerovo Area, Kuznetsky Alatau Reserve, ca. 20 km SW of Belogorsk, 26.VIII-5.IX.1993 (SG & VG).

Bathyphantes nigirinus (Westring, 1851). 1 ♀, Novosibirsk City, Akademgorodok, 23-30.V.1986 (leg. SG); 2 ♂, 1 ♀, Kemerovo Area, Kuznetsky Alatau Reserve, ca. 20 km SW of Belogorsk, 26.VIII-5.IX.1993 (SG & VG).

Bathyphantes pogonius Kulczynski, 1885. 2 ♂, 3 ♀, Kamchatka Area, Commander Islands, Bering Island, Buyan River, 29.VII.1988 (leg. AP).

Bathyphantes similimus (L. Koch, 1879) (= *B.eumenoides* Holm, 1967). 3 ♂, 3 ♀, Kemerovo Area, Kuznetsky Alatau Reserve, ca. 20 km SW of Belogorsk, 26.VIII-5.IX.1993 (SG & VG); 1 ♂, 12 ♀, Taimyr Autonomous Region, Novaya River (left tributary of Khatanga River), Ary-Mas, 16-22.VII.1992 (leg. AR).

Bolyphantes alticeps (Sundevall, 1832). 1 ♂, 1 ♀, Evenk Autonomous Region, Kulingna River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), 7-8.IX.1989 (leg. AR).

Bolyphantes lateolus (Blackwall, 1833). 1 ♀, Kemerovo Area, Kuznetsky Alatau Reserve, ca. 20 km SW of Belogorsk, 26.VIII-5.IX.1993 (SG & VG).

Centromerus sylvaticus (Blackwall, 1841). 5 ♂, 7 ♀, Kemerovo Area, Kuznetsky Alatau Reserve, ca. 20 km SW of Belogorsk, 26.VIII-5.IX.1993 (SG & VG); 1 ♂, 3 ♀, Kamchatka Peninsula, 85 km SW of Petropavlovsk-Kamchatsky, Tolmachevo Lake, 15.X.1992 (leg. TP).

Ceratinella brevis (Wider, 1834). 1 ♂, Evenk Autonomous Region, Birapchana River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), 3.VII.1988 (leg. AR); 1 ♀, Kamchatka Peninsula, 85 km SW of Petropavlovsk-Kamchatsky, Tolmachevo Lake, 14.X.1992 (leg. TP).

Ceratinopsis status (Simon, 1881). 1 ♀, Kazakhstan, Pavlodar Area, Maiskkiy Distr., Koktak Lake, 8.V.1990 (leg. OL); 1 ♂, 2 ♀, Evenk Autonomous Region, Kulingna River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), 9-11.IX.1989 (leg. AR).

Cnephalocotes obscurus (Blackwall, 1834). 1 ♀, Tyumen Area, Mazurovo, 2-15.VII.1985 (leg. NP).

Collinsia holmgreni (Thorell, 1871). 1 ♀, 1 ♀, Kamchatka Peninsula, 85 km SW of Petropavlovsk-Kamchatsky, Tolmachevo Lake, 9.X.1992 (leg. TP).

Collinsia submissa (L. Koch, 1979) (= *C.innerans* O. P.-Cambridge, 1885). 1 ♂, 2 ♀, Kamchatka Peninsula, Okhotsk Sea coast, delta of Bolshaya
River, 14.VII.1992 (leg. TP); 1 ♂, 1 ♀ (Zoologisches Museum, Universität Hamburg), Blagowestensk (Amur) (leg. Cordes, 1884; det. E.Strand, 1907).

Dactyloplistes video (Chamberlin & Ivie, 1947). 1 ♀, Yamal Autonomous Region, Stychiyu River, mouth of Tanlova-Yakha River, VI-VIII.1980 (leg. ALT & EV); 1 ♀, Kamchatka Peninsula, Okhotsk Sea coast, delta of Bolsiay River, 13.VII.1992 (leg. TP); 1 ♂, Maritime Prov., Furuqgel Island, 20.VII.1975 (leg. MS).

Dicybium facetum (L.Koch, 1879). 1 ♀, Evenk Autonomous Region, Kulingna River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), 13-14.IX.1989 (leg. AR); 2 ♀, Podkamennaya Tunguska River, Kuzmova, 12-14.VIII.1989 (leg. AR); 1 ♀, Sulumai, 1-3.X.1989 (leg. AR); 2 ♀, Evenk Autonomous Region, Velmo River (left tributary of Podkamennaya Tunguska River), 140 km upstream off mouth, 10.VIII.1990 (leg. AR); 1 ♀, Krasnoyarsk Prov., West Sayan Mts, 30-40 km N of Aradan, Oisky Mt. Range, 1,700 m, 8.VII.1993 (leg. DL).

Diplocephaclus connatus Bertkau, 1889. 6 ♂, 1 ♀, Perm Area, environs of Kungur, Spasskaya Gora, 27.V.1989 (leg. YK & SE).

Dismodicus bifrons (Blackwall, 1841). 5 ♂, 1 ♀, Evenk Autonomous Region, Birapchana River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), 3-5.VII.1988 (leg. AR); 2 ♀, Podkamennaya Tunguska River, Solomai, 30.VII.1988 (leg. AR); 1 ♀, Tuva Autonomous Republic, Azas Lake, 14.VI.1992 (leg. AR).

Entelecara erythropus (Westring, 1851) (= E. media Kulczynski, 1887). 1 ♀, Kemerovo Area, Kuznetskii Alatau Reserve, ca. 20 km SW of Belogorsk, 26.VIII-5.IX.1993 (SG & VG).

Eperigone maculata (Banks, 1892). Kamchatka Area, Commander Islands, Mednyi Island, Glinka Bay 4.VII.1983 (leg. AZ). New to the Palearctic.

Erygone arctica sibirica Kulczynski, 1908. 1 ♀, Evenk Autonomous Region, Birapchana River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), 3.VII.1989 (leg. AR); 2 ♀, Kamchatka Peninsula, 85 km SW of Petropavlovsk-Kamchatsky, Tolmachevo Lake, 10.X.1992 (leg. TP).

Erygone remota L.Koch, 1869. 1 ♂, 1 ♀, Taimyr Autonomous Region, Novaya River (left tributary of Khatanga River), Ary-Mas, 21.VII.1992 (leg. AR); 1 ♂, 7 ♀, Tuva Autonomous Republic, 35 km S of Mugur-Aksy, Mongun-Taiga Mt., 3,300 m in alt., 23.VII.1993 (leg. DL).

Erygone tirolensis L.Koch, 1872. 6 ♂, 2 ♀, Nenets Autonomous Region, Vaigach Island, Talata River, 15.VII.1987 (leg. VB); 1 ♂, Taimyr Autonomous Region, Novaya River (left tributary of Khatanga River), Ary-Mas, 21.VII.1992 (leg. AR).

Gnathonarium dentatum (Wider, 1834). 1 ♂, 2 ♀, Evenk Autonomous Region, Podkamennaya Tunguska River, mouth of Stolbovaya River, 9.IX.1988 (leg. AR).

Gnathonarium taczanowskii (O.P.-Cambridge, 1874).
1873). 1 ♂, 1 ♀, Kazakhstan, Pavlodar Area, Maisky Distr., Koktas Lake, 8.V.1990 (leg. OL).

Gongylidium rufipes (Linne, 1758). 1 ♂, Tyumen Area, Mazurovo, 2-15.VII.1985 (leg. NP); 1 ♂, Novosibirsk City, Akademgorodok, 23-30.V.1986 (leg. SG); 1 ♂, Krasnoyarsk Prov., Yelogiui River (left tributary of Yenisei River), 10 km downstream of Tyna River mouth, 25.VII.1989 (leg. AR).

Helophora insignis (Blackwall, 1841). 1 ♂, Evenk Autonomous Region, Kulingna River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), 7-8.IX.1989 (leg. AR); 2 ♂, 3 ♀, Kemerovo Area, Kuznetsky Alatau Reserve, ca. 20 km SW of Belogorsk, 26.VIII-5.IX.1993 (SG & VG); 2 ♂, Kazakhstan, Pavlodar Area, Maisky Distr., Koktas Lake, 8.V.1990 (leg. OL).

Hilaira frigida intercepta (O. P.-Cambridge, 1873). 1 ♂, Evenk Autonomous Region, Podkamennaya Tunguska River, Kuzmanka, 8.VII.1990 (leg. AR); 1 ♂, Yudolmo River (basin of Podkamennaya Tunguska River), 2 km upstream of mouth, 21.VIII.1990 (leg. AR).

Hilaira glacialis (Thorell, 1872). 8 ♀, Tuva Autonomous Republic, 35 km S of Mugur-Aksy, Mongun-Taiga Mt., 3,300 m in alt., 23.VII.1993 (leg. DL).

Hilaira pericax Hull, 1911. 1 ♂, 5 ♀, Evenk Autonomous Region, Birachana River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), 28.VI-3.VII.1988 (leg. AR); 1 ♂, upper Bakhta River (right tributary of Yenisei River), 2 km downstream of Malyi Bolodzhekit River mouth, 4.VIII.1989 (leg. AR).

Hilaira latrica Kulczynski, 1915. 1 ♀, Kemerovo Area, Kuznetsky Alatau Reserve, ca. 20 km SW of Belogorsk, 26.VIII-5.IX.1993 (SG & VG); 1 ♂, Taimyr Autonomous Region, Novaya River (left tributary of Khantaga River), Ary-Mas, 19.VII.1992 (leg. AR).

Hypomma affinis Schenkel, 1930. 1 ♀, Kamchatka Area, Commander Islands, Bering Island, Polovina Bay, 25.VII.1988 (leg. AP).

Hypomma bituberculata (Wider, 1834). 1 ♂, Kazakhstan, Pavlodar Area, Maisky Distr., Koktas Lake, 8.V.1990 (leg. OL).

Hypselistes jacsonii O. P.-Cambridge, 1902. 3 ♀, Kazakhstan, Pavlodar Area, Maisky Distr., Koktas Lake, 8.V.1990 (leg. OL).

Islandiana alata (Emerton, 1912). 1 ♂, Kamchatka Peninsula, Okhotsk Sea coast, delta of Bolshaya River, 13.VII.1992 (leg. TP).

Ioviellum sibiricum Eskov, 1988. 1 ♂, Kamchatka Peninsula, basin of Kamchatka River, Esso, 1.VII.1991 (leg. TP).

Lalithorax thaleri Eskov, 1981. 1 ♂, Evenk Autonomous Region, Velmo River (left tributary of Podkamennaya Tunguska River), 120 km upstream of mouth, 11-12.VIII.1990 (leg. AR); 2 ♂, 4 ♀, Kamchatka Peninsula, basin of Kamchatka River, Esso, 16.VIII.1991 (leg. TP).

Leptophyphantes bergstroemi Schenkel, 1930. 1 ♂, Kemerovo Area, Kuznetsky Alatau Reserve, ca.
20 km SW of Belogorsk, 26.VIII-5.IX.1993 (SG & VG).

Lepthynates complicatus (Emerton, 1882). 1 ♂, 1 ♀, Evenk Autonomous Region, Birapchana River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), I.VII.1988 (leg. AR); 1 ♂, 4 ♀, Kamchatka Peninsula, basin of Kamchatka River, Esso, 22.VI-16.VIII.1991 (leg. TP).

Lepthynates decipiens (L. Koch, 1879). 5 ♂, 6 ♀, Evenk Autonomous Region, Kulingna River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), 2-9.IX.1989 (leg. AR).

Lepthynates geminus Tanasevitch, 1982. 3 ♂, 3 ♀, Kemerovo Area, Kuznetsky Alatau Reserve, ca. 20 km SW of Belogorsk, 26.VIII-5.IX.1993 (SG & VG); 5 ♀, Evenk Autonomous Region, Podkamennaya Tunguska River, mouth of Stolbovaya River, 9.IX.1989 (leg. AR); 1 ♂, mouth of Listvenichnaya River, 26.VIII.1990 (leg. AR); 1 ♂, mouth of Yudolmo River, 21.VIII.1990 (leg. AR).

Lepthynates karpinski (O.P.-Cambridge, 1873). 1 ♀, Evenk Autonomous Region, Kulingna River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), 9.IX.1989 (leg. AR); 1 ♀, Dulkuma River (basin of Stolbovaya River), 29.IX.1989 (leg. AR); 1 ♂, Khabarovsk Prov., Solnechny Distr., Eviron Lake, VI.1992 (leg. GG); 1 ♀, Kamchatka Peninsula, basin of Kamchatka River, Esso, I.VII.1991 (leg. TP).

Lepthynates lateipes (L. Koch, 1879). 1 ♂, 1 ♀, Evenk Autonomous Region, Podkamennaya Tunguska River, mouth of Stolbovaya River, 7.IX.1989 (leg. AR).

Lepthynates mengei Kulczynski, 1887. 1 ♀, Amur Area, Khingan Reserve, Karapcha River, VIII.1991 (leg. GG).

Lepthynates nigriventris (L. Koch, 1879). 1 ♀, Novosibirsk Area, Toguchino Distr., Kotorovo, V-VIII.1986 (leg. Borodovitsyna & Danilova); 2 ♂, Kemerovo Area, Kuznetsky Alatau Reserve, ca. 20 km SW of Belogorsk, 26.VIII-5.IX.1993 (SG & VG); 2 ♀, Evenk Autonomous Region, Podkamennaya Tunguska River, mouth of Stolbovaya River, 9.IX.1989 (leg. AR); 1 ♂, 1 ♀, Kochundek River (right tributary of Podkamennaya Tunguska River), Yangorokta River mouth, 25.VII.1990 (leg. AR); 2 ♂, Kamchatka Peninsula, basin of Kamchatka River, Esso, 16.VIII.1991 (leg. TP).

Leptorhoptrum robustum (Westring, 1851). 8 ♀, Kemerovo Area, Kuznetsky Alatau Reserve, ca. 20 km SW of Belogorsk, 26.VIII-5.IX.1993 (SG & VG); 2 ♀, Evenk Autonomous Region, Kulingna River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), 16.VII.1989 (leg. AR); 2 ♀, Podkamennaya Tunguska River, Kuzmova, 16.VII.1990 (leg. AR); 1 ♂, Sulomai, 4.IX.1989 (leg. AR).

Linyphia triangularis (Clerck, 1757). 1 ♀, Kazakhstan, Pavlodar Area, Maiskiy Distr., Koktas Lake, 8.V.1990 (leg. OL).

Maro sibiricus Eskov, 1980. 1 ♂, Evenk Autonomous Region, Kulinga River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), 30.VIII.1989 (leg. AR); 1 ♀, mouth of Stolbovaya River, 11.IX.1988 (leg. AR); 1 ♀, Kamchatka Peninsula, basin of Kamchatka River, Esso, 21.VI.1991 (leg. TP); 1 ♂, Khabarovsk Prov., Bolshe-Khekhtsirsky Reserve, 6-10.VI.1990 (leg. SG & WS).

Maso sundevalli (Westring, 1851). 1 ♂, 4 ♀, Kamchatka Peninsula, 85 km SW of Petropavlovsk-Kamchatsky, Tolmachevo Lake, 14.X.1992 (leg. TP); 1 ♂, Khabarovsk Prov., Ulchskiy Distr., Skalisty Mt. Range, Soljiskoye, VII.1990 (leg. GG).

Micrargus herbigradus (Blackwall, 1854). 1 ♀, Kemerovo Area, Kuznetsky Alatau Reserve, ca. 20 km SW of Belogorsk, 26.VIII-5.IX.1993 (SG & VG); 1 ♂, 1 ♀, Evenk Autonomous Region, Birapancha River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), 29.VI.1988 (leg. AR); 4 ♂, 3 ♀, Velimo River (left tributary of Podkamennaya Tunguska River), 120 km upstream of mouth, 11-12.VIII.1990 (leg. AR).

Neulinium asiaticum Eskov, 1988. 1 ♀, Evenk Autonomous Region, Velmo River (left tributary of Podkamennaya Tunguska River), 120 km upstream of mouth, 10.VIII.1990 (leg. AR); 1 ♂, Stolbovaya River (right tributary of Podkamennaya Tunguska River), 6 km upstream of mouth, 24.VI.1992 (leg. AR); 6 ♀, Khabarovsk Prov., Ulchskiy Distr., Skalisty Mt. Range, Soljiskoye, VII.1990 (leg. GG).

Oederethorax agrestis (Blackwall, 1853). 1 ♀, Kemerovo Area, Kuznetsky Alatau Reserve, ca. 20 km SW of Belogorsk, 26.VIII-5.IX.1993 (SG & VG); 1 ♂, 1 ♀, Krasnoyarsk Prov., middle flow of Yenisei River (62°20'N), 40 km E of Mirnoye, Varlamovka River, 23.VIII.1988 (leg. AR); 2 ♀, Evenk Autonomous Region, Birapancha River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), 28.VI.1988 (leg. AR); 2 ♂, Kulinga River, 7-8.IX.1989 (leg. AR).

Oederethorax apicatus (Blackwall, 1850). 1 ♂, 1 ♀, Irkutsk Area, Slyudyanka Distr., Murino River, 5.VII.1984 (leg. AVB).

Oktigone soukyoensis (H.Saito, 1986). 1 ♀, Magadan Area, upper flow of Kolyma River, Sibity-Tyelakh, 2-12.VI.1983 (leg. SB); 1 ♀, Khabarovsk Prov., Komsmolsky Reserve, mouth of Goryun River, VII.1991 (leg. GG); 2 ♀, Aniva Distr., Novoalexandrovsk, 17.VII.1992 (leg. AB); 2 ♀, Kurile Islands, Kunashir Island, Lagunnoye Lake,
New data on North Asian Linyphiidae

Panamomops mengei Simon, 1926. 1 ♂, Tyumen Area, Mazurovo, 2-15.VII.1985 (leg. NP).

Pelecopsis parallaelela (Wider, 1834). 1 ♂, 1 ♂, Nenets Autonomous Region, Vaigatch Island, Tala-2 River, 15.VII.1987 (leg. VIB); 2 ♂, Taimyr Autonomous Region, Novaya River (left tributary of Khatanga River), Ary-Mas, 22-25.VII.1992 (leg. AR).

Pocadinemis pumila (Blackwall, 1841). 1 ♂, Krasnoyarsk Prov., middle Yenisei River, environs of Mirnoy (62°20′N), Varlamovka River, 26.VI.1991 (leg. AR); 2 ♂, Evenk Autonomous Region, Birachana River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), 3.VII.1988 (leg. AR); 1 ♂, Dulkuma River, 4.VII.1990 (leg. AR); 1 ♂, basin of Bakhta River (right tributary of Yenisei River), Ketooolo Lake, 13.VIII.1992 (leg. AR).

Poeciloneta variegata (Wider, 1834). 1 ♂, Evenk Autonomous Region, Velmo River (left tributary of Podkamennaya Tunguska River), mouth of Svetlana River, 13-14.VIII.1990 (leg. AR); 4 ♂, 6 ♂, Kamchatka Peninsula, 30 km S of Elizovo, Paratunka, 20.IX.1992 (leg. SG).

Porhromma pallidum Jackson, 1913. 1 ♂, Kemerovo Area, Kuznetsky Alatau Reserve, ca. 20 km SW of Belogorsk, 26.VIII-5.IX.1993 (SG & VG).

Porhromma pygmaeum (Blackwall, 1841). 1 ♂, Evenk Autonomous Region, Kulingna River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), 30.VIII.1989 (leg. AR); 1 ♂, 2 ♂, Podkamennaya Tunguska River, 235 km upstream off mouth, Khodas River mouth, 19.VIII.1990 (leg. AR).

Semilicola simplex (Kulczynski, 1908). 8 ♂, Taimyr Autonomous Region, Novaya River (left tributary of Khatanga River), Ary-Mas, 12-25.VII.1992 (leg. AR).

Scotiophyllum alpigenus (L. Koch, 1869). 3 ♂, 33 ♂, Evenk Autonomous Region, Kuligna River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), 30-31.VIII.1989 (leg. AR); 1
Scotinolophus alpinus (Banks, 1896). 2 ♂, 5 ♀, Evenk Autonomous Region, Kulingha River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), 7-8.IX.1989 (leg. AR); 2 ♂, Podkamennaya Tunguska River, 235 km upstream off mouth, Khakassia River mouth, 19.III.1990 (leg. AR).

Scotinolophus proterius (L. Koch, 1879). 1 ♀, Evenk Autonomous Region, Velmer River (left tributary of Podkamennaya Tunguska River), 140 km upstream off mouth, 10.VIII.1990 (leg. AR).

Stemonophantes sibiricus Grube, 1861. 1 ♂, Kamchatka Peninsula, basin of Kamchatka River, Esso, 29.VIII.1991 (leg. TP).

Stemonophantes taigaicus (Ermolajev, 1934). 1 ♂, Novosibirsk Area, Toguchino Distr., Kotooro, V-VIII.1986 (leg. Borodovitsyna & Danilova); 1 ♂, Mirnyi, VIII.1984 (leg. VB).

Thaleria orientalis Tanasevich, 1984. 1 ♀, Evenk Autonomous Region, Dulkuma River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), 30-31.VIII.1989 (leg. AR); 1 ♀, 2 ♀, Podkamennaya Tunguska River, mouth of Stolbovaya River, 11.IX.1988 (leg. AR).

Thyreosthenus parasiticus (Westring, 1851). 1 ♂, Novosibirsk City, Akademgorodorok, 23-30.V.1986 (leg. SG); 2 ♂, 1 ♀, Kemerovo Area, Kuznetsky Alatau Reserve, ca. 20 km SW of Belogorsk, 26.VIII-5.IX.1993 (SG & VG); 4 ♂, 6 ♀, Kamchatska Peninsula, 30 km S of Elizovo, Paratunka, 20.IX.1992 (leg. SG).

Tmeticus nigriceps (Kulezynski, 1916). 4 ♂, 1 ♀, Yamal Autonomous Region, Stechhuya River, mouth of Tanlava-Yakha River, VII-VIII.1990 (leg. AT & EV); 1 ♂, 1 ♀, Taimyr Autonomous Region, Novaya River (left tributary of Khatanga River), Arty-Mas, 25.VII.1992 (leg. AR); 1 ♂, Chukot Autonomous Region, Chaun Gulf, delta of Pucheyeem River (leg. ASR); 1 ♂, Anadyr River, Markovo, VII.1986 (leg. GC).

Trichoncoides piscator (Simon, 1884) 1 ♂, Chelyabinsk Area, Troitsky Reserve, 9.VI.1992 (leg. PVD).

Wabasso quaesitio (Chamberlin, 1898). 2 ♂, 1 ♀, Evenk Autonomous Region, Birapchana River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), 5.VII.1988 (leg. AR); 1 ♀, Podkamennaya Tunguska River, Sulomai, 28.VII.1988 (leg. AR).

Walchenaea antica (Wider, 1834). 1 ♂, 3 ♀, Kemerovo Area, Kuznetsky Alatau Reserve, ca. 20 km SW of Belogorsk, 26.VIII-5.IX.1993 (SG & VG).

New data on North Asian Lynxidae

(leg. NP).

Wallcenaeria clavicornis (Emerton, 1882). 1 ♀, Tuva Autonomous Republic, 35 km S of Mugursky, Mongun-Taiga Mt., 3,300 m alt., 23.VII.1993 (leg. DL).

Wallcenaeria cuculata (Koch, 1833). 1 ♂, 1 ♀, Evenk Autonomous Region, Biratchan River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), 29.VI.1988 (leg. AR).

Wallcenaeria cuspida (Blackwall, 1833). 2 ♀, Evenk Autonomous Region, Biratchan River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), 1-10.VII.1989 (leg. AR); 1 ♀, Khabarovsk Prov., Bolshe-Khekhtsirsky Reserve, VI.1990 (leg. GG).

Wallcenaeria lepida (Kulczynski, 1885). 1 ♀, Khabarovsk Prov., Ulchsky Dist., Skalistyi Mt. Range, Solisikoye, VII.1990 (leg. GG).

Wallcenaeria nodosa (O. P.-Cambridge, 1873) (= W. mayumiae H. Saito, 1986). 1 ♀, Kemerovo Area, Kuznetsky Alatau Reserve, ca. 20 km SW of Belogorsk, 26.VIII-5.IX.1993 (SG & VG); 1 ♂, Evenk Autonomous Region, Kulingna River (basin of Stolbovaya River, right tributary of Podkamennaya Tunguska River), 4.IX.1988 (leg. AR); 1 ♀, Biratchan River, 6.VII.1988 (leg. AR); 1 ♀, Podkamennaya Tunguska River, Sulomai, 2.X.1989 (leg. AR).

Wallcenaeria obscura (Blackwall, 1836). 1 ♀, Khabarovsk Prov., Verkhnebureinsky Dist., Badzhal Mt. Range, upper Mokda River, 13.VII.1988 (leg. DK); 1 ♂, Maritime Prov., Sikhote-Alin Reserve, 11.VII.1984 (leg. NG); 1 ♀, Kedrovaya Pad Reserve, 6.IX.1977 (leg. BZ).

Acknowledgements.

We are extremely indebted to all collectors whose materials have served for this contribution, as well as again to Dr. S.I. Golovatch (Moscow) for checking the English of the final draft. We wish to thank particularly Dr. H. Dastych (Zoologisches Museum und Zoologisches Institut der Universität Hamburg) for the opportunity to restudy the type of Oedothorax submissellus, as well as some old materials of Oedothorax submissellus from the Far East. This work has been supported in part by the Soros Foundation, Biodiversity Project, and an individual grant of the International Science Foundation.

References

