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Long-term memory in the parasitoid Trichogramma telengai Sorokina, 1987
(Hymenoptera: Trichogrammatidae)
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ABSTRACT. The process of miniaturization poses
a challenge for insects as they need to maintain essen-
tial cognitive functions despite substantial reductions in
body size. Despite having fewer and smaller neurons,
Trichogramma telengai Sorokina, 1987 displayed the
capacity for associative learning and retention of differ-
ent kinds of memory. Earlier experiments have shown
the presence of short-term memory in T. telengai. In this
study, we observe memory retention for up to 24 hours,
indicating the presence of long-term memory. In this ex-
periment, unlike most studies on the cognitive abilities
of parasitoids, we used aversive training to high tem-
peratures instead of olfactory stimuli. This allowed us to
observe the capacity for different memory consolidation
pathways and to compare the memory retention abilities
between insects of different groups.

PE3IOME. Bceneacteue MUHHATIOpU3AIUY TIEPE]] Ha-
CEKOMBIMU BCTAaeT 3aja4ya COXPAaHHUTh KM3HEHHO BaX-
Hble (DYHKIMHM OpraHM3Ma NpH 3HAYUTEIBHOM YMEHb-
IMEHUH pasMEPOB TEJIaA. HeCMOTpH Ha YMCHBIICHHOEC KO-
JIMYECTBO W pa3Mmep HelipoHos, Trichogramma telengai
Sorokina, 1987 moka3bIBaeT CIOCOOHOCTh K COXPAaHCHHUIO
pasHbix Gopm namsTu. [Ipeapiyiime SKCIepUMEHTBI TT0-
Ka3aJii HaJTM4YKe KPATKOBPEMEHHOW MAMSTH y Mapa3suTOu-
qoB T. telengai. B Hacrosimem uccienoBaHui Mbl HaOITrO-
JIaeM 3allOMHHAHUE BIUTIOTH JI0 24 4acoB, YTO CBHICTENb-
CTBYET O HAJIMYUHN L[OHI‘OBpeMeHHOﬁ namMaTi. B omimune
OT OOJIBIIMHCTBA MCCIEIOBAHUN KOTHUTHBHBIX CIOCO0-
HOCTEW MMapa3suTOUIOB, B 3TOM 3KCIICPUMEHTE HCIIOb-
30Bayl OOyYeHNE HE Ha ONb(MAKTOPHBIE CTUMYIIBL, a 60-

Jee YHHBEpPCAIBLHOE aBEPCHBHOE OOydeHHE Ha BHICOKHE
TEMIepaTypsl. JTO TO3BOJIMIO MPOHAGIIONATE CIIOCO0-
HOCTb K IPYTUM CII0CO0AaM KOHCOJTUIAIINH TTAMSTH, & TaK-
e CJIENaIo BO3MOXKHBIM CPABHEHHE CIIOCOOHOCTEH K CO-
XPaHCHHUIO TIAMSATH Y HACCKOMBIX M3 Pa3HbBIX TPYIIIL.

Introduction

The central nervous system (CNS) of miniature par-
asitoids undergoes several changes typical of microin-
sects, including a reduction in the number and volume
of neurons, and an overall compactization of the CNS
[Makarova, Polilov, 2013]. Despite miniaturization,
the long-term optimization by natural selection through
compensatory mutations prevents fatal changes in the
functioning of the nervous system, changes that would
otherwise lead to a decline in cognitive abilities [Bolstad
et al., 2015]. The structural plan of the head ganglia in
parasitoid wasps of the genus Trichogramma Westwood,
1833 conforms to the general pattern observed in insects
[Makarova, Polilov, 2013; Makarova et al., 2021]. The
brain of Trichogramma telengai Sorokina, 1987 com-
prises approximately 17,000 neurons with an average
diameter of 2.26 = 0.08 mm (mean = SE) [Makarova
et al., 2021]. This reduction in size is achieved through
a decrease in cytoplasmic volume, resulting in the nu-
cleus occupying 50-60% of the cell [Makarova, Polilov,
2013]. On average, the brain volume of T. evanescens
Westwood, 1833 measures 0.46 nl, occupying 7.3% of
the total body volume [Makarova, Polilov, 2013]. The
body size reduction does not affect the ability to retain
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memory, as both large and small individuals of Tricho-
gramma exhibited similar results in experiments involv-
ing olfactory and visual stimuli [Woude et al., 2018; Fe-
dorova et al., 2023].

Studies on associative learning in parasitoids are
typically conducted using olfactory stimuli [Huigens et
al., 2009; Kruidhof et al., 2012; Farahani et al., 2014].
Based on olfactory learning, Trichogramma demon-
strates the capacity to form short-term memory [Woude
etal., 2018], anesthesia-resistant memory, and long-term
memory lasting up to 24 hours [Huigens et al., 2009;
Kruidhof et al., 2012]. The persistence of protein syn-
thesis-dependent long-term memory in parasitoids was
proved by feeding Lariophagus distinguendus Forster,
1841 (Hymenoptera: Pteromalidae) with actinomycin
D, a transcription blocker, which erased the learned re-
sponse 24 h after the training [Collatz et al., 2006]. Ol-
factory stimuli are effective due to their high relevance
to the insect; however, they are not universal, requiring
the individual selection of odorants for each species.
The thermal arena used in our study is applicable to any
miniature arthropod species, allowing for the compari-
son of their learning rates and the duration of memory
retention [Fedorova et al., 2022, 2023].

This study continues a series of research on the
topic of associative learning in microinsects [Fedorova
et al., 2022, 2023]. Previously, the ability of T. telen-
gai for associative learning and memory retention for
up to 6 hours after training were demonstrated.

Material and methods

Insects

We studied adults of the wasp Trichogramma telengai So-
rokina, 1987 (Hymenoptera: Trichogrammatidae), a widely
distributed egg parasitoid of moths [Sorokina, 1987]. These
insects have a body weight of approximately 6.69 + 0.84 ng
(mean + SE). Trichogramma used in the experiments was
reared on the eggs of the Angoumois grain moth, Sitotroga ce-
realella Olivier, 1789 (Lepidoptera: Gelechiidae). The insects
were kept at 25 °C and a photoperiod of 12 : 12 h. In the ex-
periments, only individuals no older than 3 days were used.
Between memory retention tests, the insects were placed in
separate vials with a thread soaked in a sugar solution.

To conduct associative learning and memory tests,
a universal thermal arena for microinsects was used.
It was extensively described in previous studies dedicated to
the cognitive abilities of thrips and parasitoid wasps [Fedorova
etal., 2022, 2023]. The tested insect was placed on the arena,
which was heated to 37 = 0.5 °C, a temperature uncomfort-
ably high for it. The insect had to locate a cool spot that had a
comfortable temperature of 25 °C. An LED screen surrounded
the arena. The pattern displayed on the LED screen consisted
of vertical stripes, forming the target pattern, and horizontal
stripes providing uniform lighting. In the experiments with the
test group, the target pattern coincided with the spot of com-
fortable temperature, allowing the insect to learn to locate that
spot based on the pattern displayed on the screen. In the ex-
periments with the control group, the target pattern and the
spot of comfortable temperature switched randomly, so the as-
sociation between them could not form.

M.A. Fedorova et al.

Training procedure

Each insect was placed onto the arena and underwent prelimi-
nary testing (T,) to reveal whether or not it is attracted to any spot
or pattern initially. The first training session, comprising 10 cycles,
was then conducted. Each cycle included three stages: at first an in-
sect searched a cool spot, when found, it spent 1 minute in this spot
storing the memory about the visual stimulus, after that a researcher
shifted the position of the cooler spot and a pattern on the screen.

Immediately after the first training session, the first memory
test (T,) was conducted to determine whether learning had oc-
curred. Exactly 1 h after the first training session, the second
session, consisting of seven cycles, was conducted. The second
training session was aimed at obtaining better memory consoli-
dation. After 24 h, the second memory test (T,,) was performed.

The experiment was conducted on a total of 58 specimens
(37 in the test group and 21 in the control group), of which 41
specimens participated in the final memory test after 24 hours
(22 in the test group and 19 in the control group). Individuals
unable to locate the cold spot within 5 minutes or to complete
all search cycles were excluded.

Data acquisition and analysis

The movement of the insects was recorded using a Moti-
cam 3 digital camera. Coordinates of movement trajectories
were obtained using the Tracker 5.0.5 software (https://phys-
lets.org/tracker). Based on these coordinates, the time spent in
each of the four sectors was calculated.

The analysis involved examining the distribution of time spent
by the insects in each sector. Two criteria were used for data com-
parison: the percentage of time spent in the target sector (a quarter
of the arena corresponding to the target pattern on the screen) and
the learning index (the ratio of the difference between the time spent
in the target sector and the time spent in the opposite sector to the
total time in these two sectors) in the tests T, T, and T, ,. The learn-
ing index helps to focus on the data related to the target and opposite
sectors while discarding information about time spent in neighbor-
ing sectors. Sectors do not have exact boundaries on the arena, and
it is difficult for miniature insects with low-resolution vision to nav-
igate with great accuracy. Therefore, contrasting the two preceding
sectors allows to emphasize more important values and helps to
minimize small errors in orientation. This approach is widely used
in similar studies, for example with Drosophila melanogaster Mei-
gen, 1830 [Ofstad et al., 2011]. Statistical analysis was performed
using STATISTICA 12, including t-tests for data analysis.

Results

In the preliminary test (Tp), no significant differ-
ences were observed either in terms of the percentage of
time spent in the target sector (t-test, df = 49, F = 1.152,
t=-0.380, p=0.706) (Fig. 1a) or in the learning index (t-test,
df=49,F =2.014,t=0.175, p=0.862) (Fig. 1b).

In T, both percentage of time spent in the tar-
get sector (t-test, df = 61, F = 1.274, t = 2.613, p = 0.011)
(Fig. la) and learning index (t-test, df = 61, F = 1.587,
t=2.943, p=0.005) (Fig. 1b) were greater in the test group.

InT,, this tendency persisted. The test and the control groups
differed significantly both in the percentage of time spent in
the target sector (t-test, df =39, F =1.030, t=2.119, p=0.040)
(Fig. 1a) and in the learning index (t-test, df = 39, F = 1.020,
t=2.910, p=0.006) (Fig. 1b).

In the test group, the time spent in the target sec-
tor (t-test, df = 79, F = 1.416, t = 3.436, p = 0.001) (Fig. 1a)
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Fig. 1. The performance of T. telengai in each of three tests: a— the percentage (%) of time spent by T. telengai in the target sector in each of the
three tests (M + SE), t-test: *p < 0.05. b — the learning index in each of the three tests (M + SE), t-test: *p < 0.05. The column headers indicate
the sample sizes.

Puc. 1. Tloxasarenu nepemenienus T. telengai B kaxaom u3 Tpex TectoB: a — npoueHT (%) Bpemenw, nposeientoro T. telengai B uenesom
ceKTope B KakaoM u3 tpex tectoB (M £ SE), t-test: *p < 0.05. b — unueke oOyueHus B kaxaoM u3 tpex tectoB (M + SE), t-test: *p < 0.05.
B ocHoBaHMU cTONOLOB yKa3aHbl 00bEMBbI BHIOOPOK.
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and the learning index (t-test, df = 79, F = 2.364, t = 2.969,
p =0.004) (Fig. 1b) were significantly higher in T, compared to T,

The same results were observed when compar-
ing T, and T, The time spent in the target sector (t-test,
df = 57, F = 1.177, t = -2.112, p = 0.039) (Fig. la) and
the learning index (t-test, df = 57, F = 1.649, t = -2.613,
p =0.011) (Fig. 1b) were significantly higher in T,,.

No significant differences were observed compar-
ing T and T,, either in the percentage of the time spent
in the target sector (t-test, df = 64, F = 1.668, t = 1.023,
p = 0310) (Fig. la) or in the learning index (t-test,
df =64, F = 1.434,t=-0.563, p=0.575) (Fig. 1b).

Discussion

The success of memorizing a pattern depends on its impact
strength on the insect [Menzel, 1968; Menzel, 1979; Hoedjes et al.,
2012]. Tt was demonstrated earlier that Trichogramma is capable of
consolidating long-term memory after olfactory training [Huigens et
al., 2009; Kruidhof et al., 2012]. Olfactory learning involves the oc-
topaminergic pathway of memory consolidation, as observed in Apis
mellifera Linnaeus, 1758 [Mercer, Menzel, 1982; Hammer, Menzel,
1998; Menzel, 1999; Farooqui €t al., 2003], D. melanogaster [Iliadi
et al., 2017; Schwaerzel et al., 2003], and Bombus impatiens Cres-
son, 1863 [Breslow, 2017]. In this study, we observed the retention of
memory during up to 24 hours following spatial aversive training at
high temperatures. Memory consolidation under such stimuli occurs
via the serotonin pathway, independent of the octopaminergic pathway
[Sitaraman et al., 2008]. Since memory in this case persists for at least
24 hours, it can be classified as long-term memory, which is supported
by other experiments with T. evanescens, in which the insects were fed
with the translation-inhibitor anisomycin [Huigens et al., 2009].

With the help of aversive training to high temperatures we
have already discovered the abilities to preserve memory up to
1 h after training in thrips [Fedorova et al., 2022] and up to 6
h in Trichogramma [Fedorova et al., 2023]. The ability of mi-
croinsects to handle cognitive tasks regardless of the presented
stimuli suggests that miniaturization does not lead to simplifica-
tion or loss of any mechanisms related to cognitive functions.
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