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Temperature and humidity conditions in underground burrows
of the lesser Japanese mole, Mogera imaizumii (Talpidae)

Masahiro A. lwasa* & Riho Abe

ABSTRACT. In burrowing mammals, the temperature and humidity in burrows are important microen-
vironmental factors for the metabolism. To characterize the temperature and relative humidity inside the
burrows of the lesser Japanese mole, Mogera imaizumii, digital loggers were set to record these micro-
environmental characteristics in underground burrows and the aboveground air as a control. The current
temperature and relative humidity were more stable in underground than in aboveground considering that
smaller daily differences in both temperature and relative humidity were recognized only in the burrows.
The inside temperatures showed up to 26.1 £ 1.2°C irrespective of over 30°C in the aboveground and
the mean inside relative humidity showed constantly values over 100% irrespective of the range from
42.8 £ 11.7% to 84.2 + 9.0% in aboveground through a year. To avoid a restraint of radiation of body heat
by evaporation in higher temperature and humidity, lower temperature as possible above 23°C as consid-
ered to be the lower limit of the thermoneutral zone seems to be more appropriate condition for the mole.
The current results showing the temperatures around the limit (25.1 = 0.6-26.1 + 1.2°C) with over 100%
relative humidity seem to fit to the more appropriate environment, at least in summer. The current findings
means that the high humidity with lower temperature saves energy expended by increasing the metabolic
rate in M. imaizumii and probably also in other burrowing mammals.
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TemnepaTypHO-BNMaXXHOCTHbIN PEXMUM B NOA3EMHbIX HOpax
Marnoro SiNOHCKoro Kporta, Mogera imaizumii (Talpidae)

M.A. UBaca*, P. AGe

PE3IOME. Temmneparypa 1 BIaKHOCTh B HOpax POIOIIMX MJICKOITUTAIOMINX SIBISIOTCS BaXHBIMHU (hak-
TOpaMH, BIUSIONIMMU HAa OOMEH BemiecTB. [l ucciieoBaHus TeMIEepaTypbl 1 OTHOCUTEIBHON BIIaKHO-
CTH BHYTPU HOP MAJIOTO SIMOHCKOTO KpoTta Mogera imaizumii, ObUTH yCTaHOBJICHBI MU(PPOBBIC TATUHKA
JUIA pETUCTPALINU OTUX XAPAKTEPUCTUK MUKPOCPECABI B MMOA3EMHBIX HOPpAaX U HaJI3EMHOM BO3AYyXE B Kaye-
cTBe KOHTpoJisi. Tekylasi Temreparypa 1 OTHOCHTENIbHAsl BIQKHOCTh ObUIM Oosiee cTaOWIIBHBIMH B I1O[-
3eMHBIX YCIIOBHSIX, YEM B HA/I3€MHBIX, YUUTHIBAsI, YTO MEHBIINE €XKEIHEBHBIC PA3Inyus Kak B TeMIIepa-
Type, TaK ¥ B OTHOCHTEJILHOH BJIQ)KHOCTH HAOIIOAAINCH TOJIBKO B HOpax. BHyTpeHHHe Temiieparypsl co-
ctaBmsu 10 26.1 + 1.2°C He3aBucHMO OT TeMmeparypsl Haj 3emiieit 6omee 30°C, a cpenHss BHYTPEHHAS
OTHOCHTENbHAS BIAXKHOCTh MOCTOSHHO mpeBbimana 100% nHe3aBucumo oT auama3oHa oT 42.8 + 11.7%
1o 84.2 £ 9.0% wnax 3emiel B TedeHne rofa. YToObI m30ekKaTh OrpaHUYCHHS OXJIAXKICHHS Tella 3a CUeT
UCMapeHHsl IIPU BBICOKOH TeMIleparype U BIaKHOCTH, Oojiee IOIXOMSIINM YCIOBUEM ISl KpOTa Ka)eT-
Cs1 OTHOCHUTENBHO TeMIepaTypa, okoso 23°C, KoTopasi CYHUTAETCsl HUPKHUM IPEAeIoM TepMOHEHTpanbsHOM
30Hb1. [loydeHHbIe pe3yabTaThl, CBHCTEIBCTBYIOT, UTO TEMIIEPATyphl, OIN3KHE K IPEICIEHOMY 3HAYCHUIO
(25.1 £ 0.6-26.1 + 1.2°C) c oTHOCUTETBHOH BIaXXHOCTBIO Oosee 100%, moxoxe, COOTBETCTBYIOT Oojee
MOAXOALIEHN cpele, o KpaitHel mepe, aeToM. IlomyueHHble 1aHHbIE 03HAYAIOT, YTO BBICOKAs BIAKHOCTh
npu OoJiee HU3KOH TeMIIepaType MO3BOJISIET IKOHOMUTD 3aTPAuyMBaAEMYI0 SHEPTHIO 32 CYET YBEITHMUYCHHUS CKO-
poctu Metabonmuzma y M. imaizumii u, BeposiTHO, TaKKe Y IPYTHX POOIINX MICKOMUTAOIIIX.

KJIFOUEBBIE CJIOBA: Mogera imaizumii, HOpel, TemIiepaTypa, OTHOCHTEIIbHAS BIaXKHOCTb.
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Introduction

Underground burrow systems are considered to be
spaces where small mammals are safe from terrestrial
predators and temperature extremes (Nevo, 1979, 1999;
Gano & States, 1982; Nevo & Reig, 1990; Kinlaw,
1999; Martin, 2017). On the other hand, it is expected
that food resources are scattered and more restricted in
the underground ecotope than aboveground.

To date, the physiological adaptations of subter-
ranean mammals have been studied with metabolism
and thermoregulation. It has been pointed out that un-
derground burrow temperatures above the upper limit
or below the lower limit of thermoneutral zone show-
ing that metabolic rate is minimal are physiologically
stressful for burrowing mammals (Vleck, 1979; Loveg-
rove & Knight-Eloff, 1988; Burda et al., 2007). Gener-
ally, temperatures are more stable in underground than
in aboveground, and those in the nest areas are below
the thermoneutral zone of each species (McNab, 1966,
1979; Bennett et al., 1988, 1994; Contreras & McNab,
1990; Marhold & Nagel, 1995; Burda et al., 2007,
Luna & Antinuchi, 2007; Zelova et al., 2007; Iwasa &
Tabata, 2016). In addition, humidity is considered to
be the most stable factor in underground burrows and
is kept at a higher level irrespective of any condition
of aboveground air (Kay & Whitford, 1978; Moore &
Roper, 2003). In such higher humidity showing a high-
ly water-saturated condition in underground ecotope,
cooling by respiratory evaporation can be restrained to
save water balance (Burda et al., 2007; Okrouhlik et
al., 2015). Furthermore, humidity is closely related to
thermal condition and it is expected that higher ambient
temperature lead to suppress evaporation cooling and
heat loss. Most studies about relationship between un-
derground microenvironments and physiological adap-
tations for mammals have been performed in subterres-
trial rodents, mainly mole rats (McNab, 1966; Vleck,
1979; Lovegrove, 1989; Bennett et al., 1994; Marhold
& Nagel, 1995; Burda et al., 2007; Luna & Antinuchi,
2007; Zelova et al., 2007; Okrouhlik et al., 2015). As
other subterranean mammals, it is well known that tal-
pid moles, of the fossorial species taxa, inhabit under-
ground ecotopes and use burrow networks (Gorman &
Stone, 1990). However, such physiological study about
burrowing talpids has been scarce contrary to burrow-
ing rodents.

In the Japanese Islands, five species of subterra-
nean moles of the genus Mogera occur (Ohdachi et
al., 2015). In the main areas of distribution of Japanese
moles in the Japanese Islands, hot and humid summers
with heavy rains are often recorded (Japan Meteorolog-
ical Agency, 2023). Therefore, it is expected that such
harsh conditions, particularly high temperature causing
heat stress, would have certain stressful influences on
the physiology (Mohyuddin et al., 2022). Kashimura et
al. (2010) measured soil temperatures at several depths
to evaluate burrowing depth preferences in M. imaizu-
mii. However, temperature and humidity conditions in-
side underground burrows have never been researched

in Japanese talpids, and the temperature and humidity
conditions of the underground talpid’s burrows are un-
known. In this study, we studied both parameters to as-
sess the physiological effects of the underground eco-
tope in the Japanese talpid’s burrows.

Materials and methods

Vinyl chloride pipes with two inner diameters, @ 50 mm
and @ 25 mm, were set up to record burrow tempera-
ture and humidity (relative humidity) using a data log-
ger. A narrower pipe that fit the digital data logger was
attached at a right angle to a wider pipe that fit the bur-
row. The attachment point of these pipes can be venti-
lated by the hole through a metal mesh. A digital log-
ger (LASCAR Electronics, EL-USB-2+) was put into
the narrower pipe, and, to protect the logger from high
moisture or the flow of rain, the outer hole of the pipe
was completely closed using a silicon plug (Fig. 1a).

The current research area mainly consists of soil
exposed with sparce short-grasses (height several cen-
timeters) on the floor, and the underground also con-
sists of a blackish soil above a loam layer of volcanic
ash accumulated during the late Quaternary (Naruse,
1963; Oka et al., 1979; Iwasa & Takahashi, 2021). We
set loggers using the present recording system (Fig. 1a)
to four points (#A, #B, #C, and #D) of underground
burrows (depth 180 mm in #A, 170 mm in #B, 240 mm
in #C, and 140 mm in #D) of the lesser Japanese mole,
M. imaizumii, on the campus of Nihon University, Fu-
jisawa, Kanagawa Prefecture, central Honshu, Japan
(35.38°N, 139.4669°E, alt. 40 m). These burrow points
were previously confirmed to be regular burrows of the
mole (Iwasa & Takahashi, 2021). In addition, to record
the ambient temperature and relative humidity, we also
set the same logger (without the vinyl pipe system)
on the surface aboveground (height 100 mm) under a
shady cover near point #A (Fig. 1b). The temperature
and relative humidity were recorded four times per
hour at 15 min intervals (:00, :15, :30, and :45) dur-
ing a week (actually eight days; Table 1) late in the
month from October 2016 to September 2017. The cur-
rent measurement values of monthly mean + SD were
compared between aboveground and underground by
the t-test.

Results

Unfortunately, an electrical failure occurred at log-
ger #B in September and at logger #D in April, August,
and September, and no data were obtained during these
periods. However, for the other periods, all of the log-
ger data were obtained throughout the current research
(Table 1, Fig. 2). Considering the large lack of data
of #D, the #D results were not included in the current
analyses.

At the aboveground point, 4.6 + 3.4°C and 27.8 £2.5°C
were recorded as the minimum temperature in January
and the maximum temperature in August, respectively
(Table 1, Fig. 2). On the other hand, at the underground
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Fig. 1. An explanation (a) of the current research method recording the temperature and relative humidity inside a burrow.
Two vinyl chloride pipes with different diameters were attached: a large pipe (inner @ 50 mm) for the burrow and a small pipe
(inner @ 25 mm) for the logger. A hole was made in the large pipe, and its hole was sealed with a metal net to prevent mole
invasion. A small pipe was completely adhered to the hole with a silicon bond. A data logger was placed into the small pipe and
closed with a silicon plug to protect the logger from soil moisture by rain. This system, consisting of a pipe and logger, was set
underground to fit a mole burrow (indicated by dotted lines). The current aboveground (air) and underground (#A—#D) points
(b) set with loggers.

points, 5.2 £ 0.9°C (January at #C) and 26.1 + 1.2°C
(August at #B) were recorded as the minimum tem-
perature in January and the maximum temperature in
August, respectively (Table 1, Fig. 2). The temperature
of the underground points fundamentally tended to be
different from that aboveground with except for Octo-
ber at #A, December, February, and March at #B, and
December and April at #C and the aboveground log-
ger sometimes recorded over 30°C in July and August
(Fig. 2), while the underground temperatures never
reached 30°C (Tabs. 1, 2, Fig. 2).

At the aboveground point, 42.8 + 11.7% and
84.2 + 9.0% were recorded as the minimum relative
humidity in January and the maximum relative humid-
ity in June, respectively (Table 1, Fig. 2). On the other
hand, at the underground points, 99.6 + 3.1% (March at
#B) and 107.2 + 0.4% (August at #C) were recorded as
the minimum relative humidity and the maximum rela-
tive humidity, respectively (Table 1, Fig. 2). The rela-
tive humidities were stably higher at the underground
points than at the aboveground points with significance
(p <0.01, ranges from —18.0 + 5.0% to —59.8 + 9.6%)

throughout all months (Table 2). In January, the lowest
relative humidity was recognized at the aboveground
point, and the monthly differences in relative humidity
between above and undergrounds were highest (Table 2).
Namely, it was revealed that the relative humidities of
the underground points were stably kept near 100% or
over 100% throughout all seasons, which is contrary to
the variable relative humidities aboveground (Tabs. 1, 2,
Fig. 2).

The differences during a day between the daily
maximum and minimum temperatures ranged from
4.7 £ 1.1°C (July) to 10.9 + 1.6°C (January) in the
aboveground and 0.6 £ 0.4°C (July and August at #A)
to 3.3 +2.1°C (December at #C) underground (Table 1).
In addition, the differences between the daily maxi-
mum and minimum relative humidities ranged from
17.1 £ 4.7% (July) to 41.4 + 11.6% (February) in the
aboveground and 0.6 + 0.4% (July at #C) to 3.6 = 5.0%
(May at #C) underground (Table 1). The differences
during a day of both temperature and relative humid-
ity at the undergrounds were significantly differed from
those of the aboveground (p < 0.01) throughout all
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Fig. 2. Temperatures and relative humidity obtained from loggers set at an aboveground point (air) and underground points
(#A—+#C). Vertical bars, horizontal bars, and rectangles indicate ranges, means, and standard deviations, respectively. Asterisks
indicate a lack of records due to an electrical failure of #B logger. The lower limit of the thermoneutral zone is 23°C (Kashimura

etal., 2010).

months. These facts indicates that temperature and rela-
tive humidity seemed to be more stable at underground
than at aboveground.

Discussion

The present results of the underground tempera-
ture are similar to those of the soil temperatures
at a depth of 5 cm as reported by Kashimura et al.
(2010), who investigated the spatial usage prefer-
ences in M. imaizumii. The temperatures of the

underground points were slightly lower than the
aboveground point from April to August (Tabs. 1, 2,
Fig. 2). Particularly, the underground temperatures
never reached 30°C in the summer irrespective of the
fact that aboveground temperatures over 30°C were
recorded in July and August (Fig. 2). Moreover, as
found in burrows of mole rats, the temperatures of
the underground points were apparently more stable
throughout the day than the aboveground tempera-
tures based on slight differences during a day (Ben-
nett et al., 1988, 1994; Table 1, Fig. 2).
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Table 2. Mean + SD of monthly differences of temperature and relative humidity between aboveground and underground from
following formula: each value of the aboveground point — each value of each underground point.

Month #A #B #C
Oct 00£13 |ns 0514 |* 03+14 |
Nov 12420 |* 26+27 |** 21+27 |**
Dec 0.5+2.0 ** -0.3+29 ns 03+29 ns
Jan 1.0+£09  |* D21+1.0  |** 06+09 |**
Feb 05+1.5 |* 02+19 |ns 05+1.8 |*
Temperature (°C) Mar 07+1.0 |* 0014 |ns 02+14 |**
Apr 14407 | ** 10£0.8 % 0107 |ns
May 27407 | ** 27+07 | * 21406 | **
Jun 1704 |** 18+04 |** 16+04 |**
Jul 19+08 |** 1907  |** 19+08  |**
Aug 2310 | ** 17+£08 | ** 18+07 |**
Sep 08+10 |* nd 03+1.1  |**
Oct 342+ 114 | * 330+12.1 |+ 306+ 114 |+
Nov 194474 | 201 +£7.8 | ** 202+77 | **
Dec 37.0+87 | ** 37.0+£103 | ** 377+104 |
Jan 508+96 |** T578+102 | ** 595+103 | **
Feb 508+ 11.7 | ** 492+ 12.0 | ** 238+122 |**
. i Mar 472+132 | ** 445+ 132 | * 480+ 13.4 | **
Relative humidity (%) Apr 352+10.1 | ** 35794 % 396495 | %
May 281439 % 238+4.1 | % 287+37 | %
Jun 210+52 | 18.0£50 | ** 225+50 |*
Jul 2118 | * 209+3.0 | ** 250+29 | **
Aug 238468 | ** 203+49 | ** 20.6+27 | **
Sep 233468 | ** nd 27.0+£10.1 | **

nd — no data because of an electric failure of logger. t-test (o = 0.01) was done between the aboveground point and each
underground point throughout each month (**, significant; ns, not significant). Bold and underlined values indicate the largest

and the smallest absolute values.

In burrowing mammals, underground burrow tem-
peratures above the upper limit or below the lower limit
of thermoneutrality cause physiological stress (Vleck,
1979; Lovegrove & Knight-Eloff, 1988; Burda et al.,
2007). For example, in a mole-rat taxa preferring mesic
environments, thermoneutral zones are considered to
be 28.0 to 32.5°C in Cryptomys (Bennett et al., 1994);
in Talpidae of Eulipotyphla, thermoneutral zones are
24.5 to 33.0°C in the star-nosed mole, Condylura cris-
tata (Campbell et al., 1999), and 24.9 to 32.0°C in the
American shrew-mole, Neurotrichus gibbsii (Campbell
& Hochachka, 2000). Kashimura et al. (2010) men-
tioned that the lower limit of the thermoneutral zone of
M. imaizumii is likely to be 23.0°C because M. imai-
zumii appears at shallow layer over 23.0°C soil tem-
perature in summer. On the other hand, Frears (1993)
analyzed the metabolic rate in the European mole,
Talpa europaea, and the minimal metabolic rate was
recorded at ambient temperatures 25-26°C, although
the thermoneutral zone was not confirmed. In addition,
moles actually died over 35°C and the lethal body tem-
perature seems to be 36.8-37.5°C which is lower than
other mammals. Furthermore, the mean resting meta-
bolic rate decreases during increasing up to 30°C and it

is suggested that over 30°C leads to a risk of overheat-
ing (Frears, 1993). Both Talpa and Mogera are closely
related Palaearctic taxa (He et al., 2017) and inhabit
temperate regions in Europe and Japan, respectively
(Loy & Corti, 1996; Ohdachi et al., 2015). Therefore,
it is estimated that the thermoneutral zone of Mogera
likely ranges from 23°C to around 30°C (Frears, 1993;
Kashimura et al., 2010).

In hot condition above the upper critical temperature,
rising body heat sometimes become a serious problem
and dissipating heat by respiratory evaporation would be
performed as a themoregulation method. However, the
dissipating heat would be difficult under higher humid-
ity condition and failure of dissipating heat leads death
(Feldhamer et al., 2020). In addition, higher humidity
make a cooling system by respiratory evaporation mini-
mum to save water in underground ecotope (Burda et al.,
2007). Therefore, it is expected that higher temperature
and humidity condition can cause a serious damage for
the mole. Considering the current higher humidity at the
underground (Table 1, Fig. 2), meaning water-saturated
condition, radiation of heat by evaporation seems to be
restrained, particularly in hot summer. In such situation,
lower temperature as possible above 23°C (Kahimura et
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al., 2010) seems to be more appropriate environment for
the mole. In July and August, the underground tempera-
tures 25.1 £0.6-26.1 £ 1.2°C (Table 1), corresponding to
the minimal metabolic rate in T. europaea (Frears, 1993),
at the present depths were around 23°C which is consid-
ered to be the lower limit (Table 1, Fig. 2). Therefore, in
hot summer, these burrow temperature conditions would
be fit for the mole as a more appropriate environment
mentioned above. On the other hand, in winter, the pres-
ent underground temperatures reached < 10°C (Table
1, Fig. 2), as reported by Kashimura et al. (2010), and
the current results expected that colder stresses would
expose moles to the lower extreme of thermoneutrality.
According to Kashimura et al. (2010), deeper soil tend-
ed to have a higher temperature in February, and moles
frequently used deeper burrows. It is suggested that, in
order to avoid such cold stress, moles would shift to uti-
lizing spaces at warmer depths, and/or may change their
metabolic rate as other mole species do (Campbell et al.,
1999). Therefore, temperature and humidity conditions
at more deeper burrows should be researched in winter.
According to Kay & Whitford (1978) and Moore &
Roper (2003), humidity is stable in underground bur-
rows with higher levels irrespective of any conditions
of the aboveground air. As in their findings, the cur-
rent underground humidities showed obvious stabilities
with over 100% and smaller differences during a day;
those were apparently higher than the aboveground hu-
midity (Tabs. 1, 2, Fig. 2). Such stability is also con-
firmed in a case in which the humidity of the burrows
of the silvery mole rat Heliophobius does not differ be-
tween the beginning of the dry season following rains
and the middle of the hot dry season (Sumbera et al.,
2004). In undergrounds, higher humidity is likely to
be kept throughout a year irrespective of aboveground
condition and such tendency means constantly restraint
of radiation of body heat through evaporation. There-
fore, the current results with higher humidity with low-
er temperature, around 23°C, inside the burrows would
give a physiological advantage in summer, to save
metabolic rates in the underground life of M. imaizumii.
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