Gastrointestinal nematodes of red deer (*Cervus elaphus*) in European Russia

Dmitry N. Kuznetsov*, Natalya B. Romashova, Boris V. Romashov & Egor A. Vlasov

ABSTRACT. The species composition of gastrointestinal nematodes found during necropsies of 33 red deer from three regions of European Russia (Tver', Smolensk and Voronezh) was determined. In total, 11 species of nematodes were found, namely *Aonchotheca bovis, Ashworthius sidemi, Cooperia pectinata, Mazamastrongylus dagestanica, Nematodirus roscidus, Ostertagia leptospicularis, Spiculopteragia asymmetrica, Spiculopteragia spiculoptera, Trichostrongylus axei, Trichostrongylus colubriformis* and *Trichuris ovis.* Besides, a minor morph of *Ostertagia leptospicularis* ("O. kolchida"), as well as a minor morph of *Spiculopteragia asymmetrica* ("S. quadrispiculata"), were also detected in some of the red deer. The number of gastrointestinal nematodes found in red deer during the present study ranged from 4 to 431 individuals. Thus, the intensity of infection was rather low. S. asymmetrica was found in all three regions studied. This species showed the highest intensity of infection, as well as the prevalence. O. leptospicularis was also found in all three regions studied, but the intensity of infection and prevalence of this species was lower than that of S. asymmetrica. The other species of gastrointestinal nematodes were found in one or two of the three regions studied. A. sidemi, S. asymmetrica, M. dagestanica and N. roscidus were found in red deer in European Russia for the first time. A trend towards changes in the communities of nematodes parasitising red deer and the spread of parasites that are not typical for this host and this area was noted.

How to cite this article: Kuznetsov D.N., Romashova N.B., Romashov B.V., Vlasov E.A. 2025. Gastro-intestinal nematodes of red deer (*Cervus elaphus*) in European Russia // Russian J. Theriol. Vol.24. No.2. P.142–153. doi: 10.15298/rusjtheriol.24.2.07

KEY WORDS: wild ruminants, digestive tract, parasitic nematodes, Russia.

Dmitry N. Kuznetsov [dkuznetsov@mail.ru], A.N. Severtsov Institute of Ecology and Evolution RAS, Mytnaya str., h. 28, build. 1, Moscow 119049, Russia; Natalya B. Romashova [bvnrom@rambler.ru], Voronezh State Nature Biosphere Reserve, Voronezh 394080, Russia; Boris V. Romashov [bvrom@rambler.ru], Voronezh State Agrarian University named after Emperor Peter the Great, Mitchurina str., 1, Voronezh 394087, Russia; Voronezh State Nature Biosphere Reserve, Voronezh 394080, Russia; Egor A. Vlasov [egorvlassoff@gmail.com], V.V. Alekhin Central-Chernozem State Nature Biosphere Reserve, Zapovednyi, Kursk Oblast 305528, Russia.

Нематоды желудочно-кишечного тракта благородных оленей (*Cervus elaphus*) в европейской части России

Д.Н. Кузнецов*, Н.Б. Ромашова, Б.В. Ромашов, Е.А. Власов

РЕЗЮМЕ. Определён видовой состав нематод желудочно-кишечного тракта, обнаруженных во время вскрытий 33 благородных оленей из трёх областей европейской части России (Тверской, Смоленской и Воронежской). В общей сложности были обнаружены нематоды 11 видов, а именно: Aonchotheca bovis, Ashworthius sidemi, Cooperia pectinata, Mazamastrongylus dagestanica, Nematodirus roscidus, Ostertagia leptospicularis, Spiculopteragia asymmetrica, Spiculopteragia spiculoptera, Trichostrongylus axei, Trichostrongylus colubriformis и Trichuris ovis. Кроме того, у некоторых из благородных оленей были отмечены минорные морфы вида Ostertagia leptospicularis ("O. kolchida"), а также вида Spiculopteragia asymmetrica ("S. quadrispiculata"). Количество нематод желудочно-кишечного тракта, найденных у благородных оленей в рамках данного исследования, варьировало от 4 до 431 экземпляра. Таким образом, интенсивность инвазии была сравнительно низкой. Вид S. asymmetrica был обнаружен во всех трех областях, где проводилось исследование, и показал наиболее высокую интенсивность и экстенсивность инвазии. Вид O. leptospicularis также был найден во всех трех областях, однако интенсивность и экстенсивность инвазии были ниже, чем у S. asymmetrica.

^{*} Corresponding author

Остальные виды нематод были найдены в одной или двух из трех исследованных областей. Виды *A. sidemi*, *S. asymmetrica*, *M. dagestanica* и *N. roscidus* обнаружены у благородных оленей в европейской части России впервые. Отмечена тенденция к изменениям в сообществах нематод, паразитирующих у благородного оленя, и к распространению паразитов, которые не типичны для этого хозяина и этих регионов.

КЛЮЧЕВЫЕ СЛОВА: дикие жвачные, пищеварительный тракт, паразитические нематоды, Россия.

Introduction

Data concerning helminths of Cervus elaphus Linnaeus, 1758 inhabiting the territory of Russia are very scarce and were published several decades ago (Asadov, 1960; Pryadko, 1976; Govorka et al., 1988). At the same time, the number of C. elaphus in the European part of Russia currently tends to increase. The red deer is a very common species in game farms in European Russia. The population of red deer in protected areas such as nature reserves is also increasing. It is well known that infection with gastrointestinal nematodes can significantly impair the health of wild ruminants (Irvin et al., 2006; Magdalek et al., 2021). There are a number of studies on the helminth fauna of red deer in several European countries (Kutzer & Hinaidy, 1969; Bernard et al., 1988; Zaffaroni et al., 2000; Cisek et al., 2003; Shimalov & Shimalov, 2003; Santin-Duran et al., 2004; Hora et al., 2017; Zvegintsova et al., 2018; van Beest et al., 2023). It should be noted that some studies in recent years have shown changes in the communities of nematodes parasitising C. elaphus and the spread of alien species of nematodes (Ferte et al., 2000; Drozdz et al., 2002; Kowal et al., 2014; Halvarsson et al., 2022; Pyziel-Serafin et al., 2023). In this regard, it seems relevant to study the species composition of gastrointestinal nematodes in C. elaphus inhabiting the European part of Russia.

Material and methods

Sampling

The nematodes were collected during necropsies of 33 red deer in three regions of European Russia: Tver' (55.7° N, 32.2° E), Smolensk (55.267° N, 34.483° E) and Voronezh (51.85° N, 39.67° E) (Fig. 1). Samples from Tver' and Smolensk were collected in game farms, whereas the samples from Voronezh were collected in Voronezh State Nature Biosphere Reserve. The study included red deer from the so-called Voronezh population, which comes from 10 individuals of C. elaphus imported from Germany at the end of the nineteenth century (Likhatsky et al., 2012). Over the twentieth century, as a result of human-controlled translocations and natural migrations, red deer from the Voronezh population have spread to almost the entire European part of Russia (Likhatsky et al., 2012; Kuznetsova et al., 2013). Based on information provided by the staff of the game farms in Smolensk and Tver', we can state that the red deer from these game farms also have origins from the Voronezh population of *C. elaphus*.

All of the studied red deer had died owing to accidental causes, such as injuries. The age of the red deer was estimated based on their appearance, conditions of antlers, teeth and limb bones (Klevezal, 2007). The digestive tracts of red deer were dissected and examined according to helminthological methods (Ivashkin *et al.*, 1971; Kuznetsov, 2020). Besides, we have conducted the species identification of gastrointestinal nematodes from the storage of Voronezh State Nature Biosphere Reserve (the samples from 11 red deer collected in 1980–1990s).

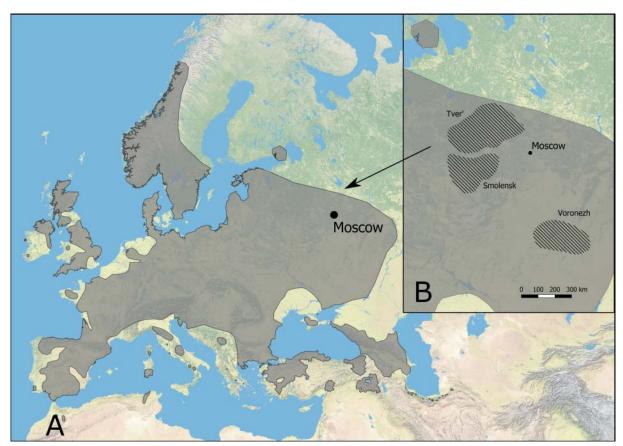
Taxonomical identification

In most cases, the identification of the detected nematodes was based on the morphology of the males due to the lack of distinct differences in the morphology of the females. The nematodes were prepared as temporary whole mounts, cleared in glycerol solution (two parts of glycerol and eight parts of water) and then examined using light microscopy at magnification of 40 to 400. The species identification was carried out based on morphological features presented in literature (Skrjabin et al., 1954; Govorka et al., 1988; Drozdz, 1995; Hoberg & Khrustalev, 1996; Lehrter et al., 2016). The main features used for the identification of gastrointestinal strongyles were the peculiarities of male bursa morphology and the shape of spicules. Trichuris nematodes were identified based on the data presented by Yevstafieva et al. (2018).

Descriptive statistics

To characterise host infection with gastrointestinal nematodes we provide sample prevalence and sample mean intensity with male nematodes. We use the Jeffreys credible interval, recommended for small samples (Brown *et al.*, 2001), to characterise uncertainty for prevalence. The Bias Corrected and Accelerated Interval (BCAI) is used to characterise uncertainty in mean intensity with male nematodes. For small samples (fewer than 3 infected hosts), BCAI is not available. All intervals are calculated with 90% confidence level. Sample means, prevalence and intervals were calculated in R (R Core Team, 2025) using the DescTools (Signorell, 2025) and bayestestR (Makowski *et al.*, 2019) packages.

Results


Twenty-six of the 33 examined red deer were found to be infected with gastrointestinal nematodes. Thus, the prevalence of infection with all species of detected nematodes was 78.8%. The intensity of the infection ranged from 4 to 431 individuals of nematodes (Table 1). All of the studied red deer were not emaciated and no pronounced lesions of the digestive tracts were observed.

The intensity of infection, prevalence rates and species names of the detected nematodes are presented in Tables 1, 2. In Table 1 obtained data are given in chronological order (separately for three regions of sampling). The species names of the detected nematodes are presented in alphabetical order. In total, 11 species of gastrointestinal nematodes were found in the present study. Besides, a minor morph of *Ostertagia leptospicularis* Assadov, 1953 ("O. kolchida"), as well as a minor morph of *Spiculopteragia asymmetrica* (Ware, 1925) ("S. quadrispiculata"), were also detected in some of the red deer (Table 1).

Discussion

The intensity of the infection with gastrointestinal nematodes found during the present study was low. The

maximum level of the intensity of infection that we recorded was 431 individuals of nematodes in the red deer from Voronezh dissected in October 2019 (Table 1). It should be noted that Irvine et al. (2006) consider a level of less than 1000 nematodes to be the low intensity of infection. The studies concerning gastrointestinal nematodes of C. elaphus in various countries, as a rule, show a low level of the intensity of infection (Rickard et al., 1993; Drozdz et al., 2002; Cisek et al., 2003; Santin-Duran et al., 2004; Shimalov & Shimalov, 2003; Kowal et al., 2014). In comparison, the intensity of infection, noted in other species of wild ruminants, such as moose or bison, looks more impressive (Demiaszkiewicz et al., 2009; Grandi et al., 2018; Filip-Hutsch et al., 2021). However, we must keep in mind that even a low level of the infection may impact the health of red deer (Irvine et al., 2006). At the same time, we detected rather big species diversity of gastrointestinal nematodes parasitising red deer in European Russia. In our study, the most commonly detected species was S. asymmetrica (Fig. 2). This species was found in all three regions studied, with 60.6% (46.3-73.6%) prevalence (Table 2). Based on the literature data, it can be assumed that red deer is a fairly common host for S. asymmetrica. This nematode was recorded in C. elaphus not only in several European countries, but also in other parts of the world (Kutzer & Hinaidy, 1969;

Fig. 1. The area of collection of *C. elaphus* nematodes (hatching) (B) within the distribution range of *C. elaphus* in Europe (A). The distribution range of *C. elaphus* in Europe is given according to IUCN (Lovari *et al.*, 2018).

Table 1. The intensity of infection with gastrointestinal nematodes in studied individuals of *Cervus elaphus* and the list of detected species. Abbreviations: A — abomasum, SI — small intestine, LI — large intestine. Major and minor morphs are separated by slash.

Sequence number of the	Region of sampling	Month and year of sampling	Sex and age of hosts	Number of detected nematodes			Species of detected nematodes, localization
studied red deer				Total	Males	Females	and number of males (in brackets)
1	Tver'	January 2016	female, 2 years	4	1	3	Spiculopteragia asymmetrica (A-1)
2	Tver'	January 2016	female, 2 years	_	_	_	_
3	Tver'	March 2016	female, 2 years	_	_	_	_
4	Tver'	March 2016	male, 4 years	_	_	_	_
5	Tver'	January 2017	female, 2 years	127	46	81	S. asymmetrica (A- 42), Spiculopteragia spiculoptera (A-4)
6	Tver'	January 2017	female, 3 years	_	_	_	_
7	Tver'	November 2018	male, 6 month	305	116	189	Ostertagia leptospicularis (A-79) / "O. kolchida" (A-19), S. asymmetrica (A-16), Trichostrongylus colubriformis (A-1), Trichuris ovis (LI-1)
8	Tver'	December 2019	female, 3 years	52	16	36	O. leptospicularis (A-12), S. asymmetrica (A-4)
9	Tver'	February 2020	female, 5 years	146	54	92	O. leptospicularis (A-29) / "O. kolchida" (A-4), S. asymmetrica (A-16), S. spiculoptera (A-2), T. colubriformis (A-2), T. ovis (LI-1)
10	Tver'	September 2021	male, 3 years	-	_	-	_
11	Tver'	January 2022	female, 6 years	129	40	89	O. leptospicularis (A-21), S. asymmetrica (A-16), S. spiculoptera (A-3)
12	Smolensk	September 2018	male, 1 year	212	85	127	Ashworthius sidemi (A-6), O. leptospicularis (A-13), S. asymmetrica (A-65), Trichostrongylus axei (A-1)
13	Smolensk	March 2019	female, 5 years	_	_	_	-
14	Smolensk	December 2019	male, 4 years	270	78	192	O. leptospicularis (A-32), S. asymmetrica (A-46)
15	Smolensk	October 2020	female, 5 years	221	71	150	O. leptospicularis (A-32) / "O. kolchida" (A-3), S. asymmetrica (A-36)
16	Smolensk	February 2021	male, 5 years	240	56	184	S. asymmetrica (A-56)
17	Smolensk	April 2021	female, 2 years	-	_	_	_
18	Smolensk	November 2021	female, 4 years	131	34	97	S. asymmetrica (A-34)

Table 1 (continue)

19	Smolensk	December 2022	female, 6 years	125	38	87	O. leptospicularis (A-12), S. asymmetrica (A-26)
20	Voronezh	December 1984	female, 5 years	361	161	200	Aonchotheca bovis (SI-161)
21	Voronezh	December 1986	male, 7 years	373	145	228	Cooperia pectinata (SI-1), Nematodirus roscidus (SI-1), O. leptospicularis (A-5), S. asymmetrica (A-128) / "S. quadrispiculata" (A-10)
22	Voronezh	March 1987	male, 1 year	59	27	32	C. pectinata (SI-18), N. roscidus (SI-9)
23	Voronezh	March 1987	male, 1 year	14	4	10	C. pectinata (SI-2), T. ovis (LI -2)
24	Voronezh	March 1987	female, 1 year	49	15	34	C. pectinata (SI-4), Mazamastrongylus dagestanica (A-4), O. leptospicularis (A-1), S. asymmetrica (A-3) / "S. quadrispiculata" (A-1), T. ovis (LI -2)
25	Voronezh	February 1988	female, 4 years	54	19	35	S. asymmetrica (A-17) / "S. quadrispiculata" (A-2)
26	Voronezh	February 1989	female, 7 years	196	80	116	S. asymmetrica (A-71) / "S. quadrispiculata" (A-9)
27	Voronezh	March 1989	female, 7 years	186	60	126	O. leptospicularis (A-1), S. asymmetrica (A-57) / "S. quadrispiculata" (A-2)
28	Voronezh	January 1992	female, 1 year	77	25	52	N. roscidus (SI-25)
29	Voronezh	January 1992	female, 7 year	13	8	5	C. pectinata (SI-8)
30	Voronezh	January 1992	female, 7 years	6	1	5	C. pectinata (SI-1)
31	Voronezh	October 2019	male, 8 years	431	186	245	A. sidemi (A-182), S. asymmetrica (A-4)
32	Voronezh	November 2020	female, 8 years	183	39	144	A. sidemi (A-23), S. asymmetrica (A-16)
33	Voronezh	March 2021	female, 1 year	161	49	112	A. sidemi (A-44), M. dagestanica (A-1), S. asymmetrica (A-4)

Bernard et al., 1988; Suarez et al., 1991; Rickard et al., 1993; Mason, 1994; Santin-Duran et al., 2004; Youssefi et al., 2014; Halvarsson et al., 2022; Pyziel-Serafin et al., 2023). Ostertagia leptospicularis was also found in all three regions studied, but the prevalence of this species was almost twice as low as S. asymmetrica (Table 2). It is interesting that, according to the literature data, O. leptospicularis was recorded in red deer somewhat more often than S. asymmetrica (Kutzer & Hinaidy,

1969; Bernard et al., 1988; Suarez et al., 1991; Mason, 1994; Zaffaroni et al., 2000; Drozdz et al., 2002; Cisek et al., 2003; Santin-Duran et al., 2004; Halvarsson et al., 2022; Pyziel-Serafin et al., 2023). Ostertagia leptospcularis is considered to be one of the dominant species in Cervidae, however, it is also found from time to time in Bovidae, including domestic ruminants (Zaffaroni et al., 2000; Wyrobisz-Papiewska et al., 2018).

Table 2. The prevalence and mean intensity of infection in <i>Cervus elaphus</i> ($n=33$) by the species of gastrointestinal nematodes.
--

Nematode species	Regions of detection	The number of infected animals	Prevalence (%) with intervals	Mean intensity of infection with intervals
Aonchotheca bovis	Voronezh	1	3.0 (0.5–11.2)	161
Ashworthius sidemi	Smolensk, Voronezh	4	12.1 (5.2–23.8)	63.8 (24.1–180.1)
Cooperia pectinata	Voronezh	6	18.2 (9.3–30.0)	5.6 (1.0–17.3)
Mazamastrongylus dagestanica	Voronezh	2	6.1 (1.8–15.8)	2.5
Nematodirus roscidus	Voronezh	3	9.1 (3.4–19.9)	11.6 (4.2–24.7)
Ostertagia leptospicularis	Tver', Smolensk, Voronezh	11	33.3 (21.2–47.5)	23.9 (2.2–84.6)
Spiculopteragia asymmetrica	Tver', Smolensk, Voronezh	20	60.6 (46.3–73.6)	34.1 (4.0–110.6)
Spiculopteragia spiculoptera	Tver'	3	9.1 (3.4–19.9)	3 (2.0–3.6)
Trichostrongylus axei	Smolensk	1	3.0 (0.5–11.2)	1
Trichostrongylus colubriformis	Tver'	2	6.1 (1.8–15.8)	1.5
Trichuris ovis	Tver', Voronezh	4	12.1 (5.2–23.8)	1.5 (1.0–2.0)

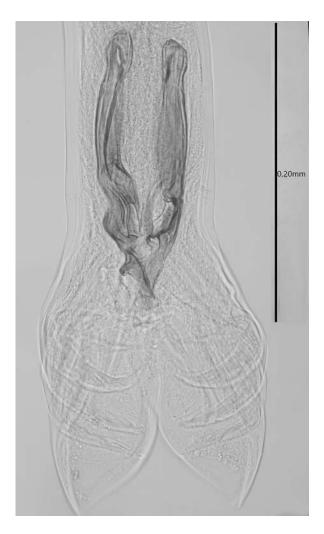


Fig. 2. Spiculopteragia asymmetrica, posterior end of male (bursa and spicules).

Cooperia pectinata Ransom, 1907 was found in six of the 33 red deer examined, giving 18.2% (9.3–30.0%) prevalence. However, *C. pectinata* was found only in Voronezh, in the samples collected in 1980–1990s (Tables 1, 2). Previously *C. pectinata* was reported from *C. elaphus* in Austria, Belgium, Poland and New Zealand (Kutzer & Hinaidy, 1969; Bernard *et al.*, 1988; Mason, 1994; Drozdz *et al.*, 2002; Cisek *et al.*, 2003). Recent study using a molecular analysis revealed that

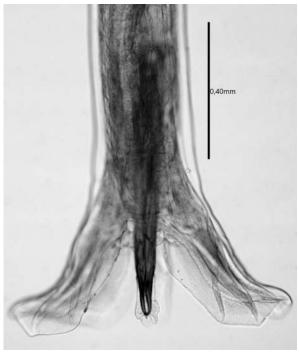


Fig. 3. Ashworthius sidemi, posterior end of male (bursa and spicules).

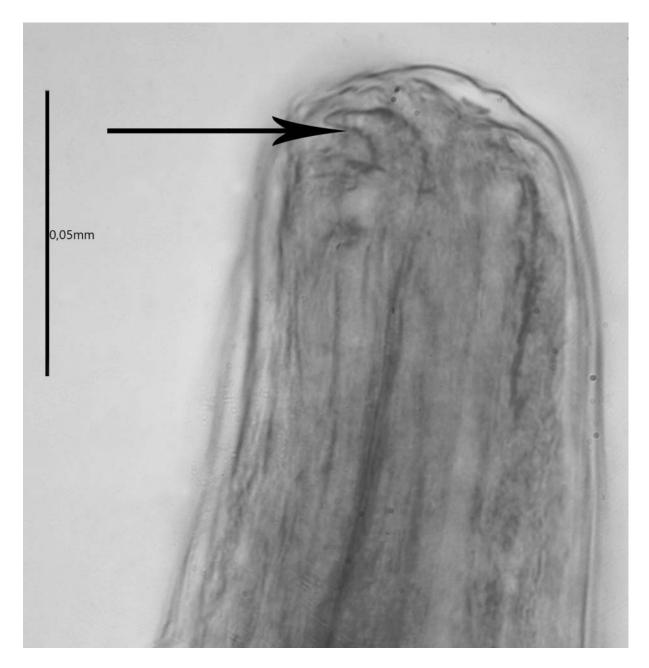


Fig. 4. Ashworthius sidemi, anterior end with the neodont in buccal cavity (indicated by the arrow).

Cooperia sp. parasitising Czech red deer is a separate taxon from *C. pectinata* and suggested *Cooperia ventricosa* (Rudolphi, 1809) as a typical parasite for *C. elaphus* (Albrechtova *et al.*, 2024). At the same time, Albrechtova *et al.* (2024) note that the resurrection of *C. ventricosa* requires verification by collecting new nematode samples from the type host *C. elaphus* from the type locality. Therefore, we keep the name *C. pectinata* in the present study.

Trichuris ovis (Abildgaard, 1795) was observed in Tver' and Voronezh, the prevalence was 12.1% (5.2–23.8%) (Table 2). Previously *T. ovis* was found in

C. elaphus from Belarus, Ukraine, Poland and New Zealand (Mason, 1994; Cisek et al., 2003; Shimalov & Shimalov, 2003; Zvegintsova et al., 2018). In this regard, it should be noted that many publications on nematodes of ruminants are limited to the study of abomasum and therefore do not cover nematodes harboring in the small intestine (such as Cooperia spp. or Nematodirus spp.) and in the large intestine (such as Trichuris spp.).

Special attention should be paid to the blood-sucking nematode *Ashworthius sidemi* Schulz, 1933, which was found in 12.1% (5.2–23.8%) of the red deer in two

Fig. 5. Nematodirus roscidus, posterior end of male (bursa and spicules).

of the three regions studied (Table 2; Figs 3, 4). The detection of A. sidemi in red deer in the European part of Russia confirms the further spreading of this Asian nematode. Another evidence of the increasing spread of A. sidemi in Europe in the last two decades is the absence of nematodes of this species in the samples from Voronezh collected in 1980-1990s (Table 1). Spiculopteragia spiculoptera (Guschanskaja, 1931) was found in three red deer from Tver' (Table 2). S. spiculoptera is quite often observed in C. elaphus, both in Europe and in other parts of the world (Kutzer & Hinaidy, 1969; Bernard et al., 1988; Suarez et al., 1991; Rickard et al., 1993; Mason, 1994; Zaffaroni et al., 2000; Kowal et al., 2014). Nematodirus roscidus Railliet, 1911 was found in three red deer, only in the samples collected in Voronezh in 1980-1990s (Tables 1, 2; Fig. 5). Previously N. roscidus was reported from C. elaphus in Austria and Poland (Kutzer & Hinaidy, 1969; Drozdz et al., 2002; Pyziel-Serafin et al., 2023). We believe that the reasons for these relatively rare observations of N. roscidus are that many studies are limited to the dissection of abomasum, as well as certain difficulties in morphological differentiation of this species from other Nematodirus spp. Mazamastrongylus dagestanica (Altaev, 1953) was detected in two red deer from

Fig. 6. *Mazamastrongylus dagestanica*, posterior end of male (bursa and spicules).

Voronezh, both in a recent sample and in a sample collected in 1987 (Table 1; Fig. 6). Interestingly, the first report on *M. dagestanica* in red deer was published only recently (Pyziel-Serafin *et al.*, 2023). This species is considered to be a common parasite of moose, and it is also often found in roe deer (Kuznetsov *et al.*, 2014, 2020; Wyrobisz-Papiewska *et al.*, 2018). It should also be noted that *M. dagestanica* was recently found for the first time in common fallow deer (Kuznetsov, 2024).

Trichostrongylus colubriformis (Giles, 1892) was detected in two red deer from Tver' (Table 2). As for the references to this species in the literature, Govorka et al. (1988) list C. elaphus among the hosts of T. colubriformis, but don't specify in which country it was recorded. We found Trichostrongylus axei (Cobbold, 1879) in one red deer from Smolensk (Table 2). Previously T. axei was reported from the red deer in several European countries, as well as in New Zealand (Kutzer & Hinaidy, 1969; Mason, 1994; Zaffaroni et al., 2000; Santin-Duran et al., 2004; Zvegintsova et al., 2018; Halvarsson et al., 2022; Pyziel-Serafin et al., 2023). These two detected species of Trichostrongylus are very widespread among domestic and wild ruminants in different parts of the world (Skrjabin et al., 1954; Govorka et al., 1988; Movsesyan et al., 2019). Moreover, T. colubriformis and T. axei are regarded as zoonotic parasites (Skrjabin et al., 1954; Mizani et al., 2017; Ashrafi et al., 2020; Bhat et al., 2023). Aonchotheca bovis (Schnyder, 1906) was observed in one sample collected in Voronezh, in 1984 (Table 1). It is noteworthy that A. bovis was recently found in the moose from the same place of sampling (Voronezh State Nature Biosphere Reserve) (Kuznetsov et al., 2022). This nematode was found earlier in several European countries in various species of wild ruminants, as well as in cattle and sheep (Govorka et al., 1988).

Compared with the studies of gastrointestinal nematodes of moose and common fallow deer in European Russia (Kuznetsov et al., 2022; Kuznetsov, 2024), a higher level of the species diversity was revealed in the present study. In this regard, it should be noted that moose in general is characterized by a low level of nematode species diversity (Maklakova & Rykovsky, 2008). As for the recent study of nematodes of common fallow deer (Kuznetsov, 2024), it is considered as an initial one, suggesting further additions. However, it should be noted that in the present study, S. asymmetrica turned out to be the dominant species, as in the study of common fallow deer (Kuznetsov, 2024). In the study of common fallow deer, M. dagestanica was found for the first time for this host (Kuznetsov, 2024), and in the present study, M. dagestanica was found for the first time in red deer in Russia. It is important to note that M. dagestanica was found in red deer in Voronezh, while in fallow deer this nematode was found in Smolensk (Kuznetsov, 2024). Thus, there is a tendency for the spread of *M. dagestanica* among wild ruminants in the European part of Russia. At the same time, the present study revealed a lower level of the species diversity of nematodes than that in European roe deer (Kuznetsov *et al.*, 2020). This can be explained by the fact that a significant number of the samples from red deer were collected in closed areas of the game farms, where the red deer were prevented from moving long distances and co-pasturing with other ruminants. In particular, for this reason, the red deer we studied were not at serious risk of becoming infected with the species of nematodes typical of domestic ruminants.

In comparison with the data obtained earlier in the studies of gastrointestinal nematodes of C. elaphus in European Russia, our data coincide with Asadov (1960) for one species only (O. leptospicularis). Compared with Pryadko (1976) our data coincide on seven species (A. bovis, C. pectinata, O. leptospicularis, S. spiculoptera, T. axei, T. colubriformis and T. ovis). Govorka et al. (1988) summed up the data on helminths of wild ungulates of Eastern Europe. However, Govorka et al. (1988) presented the data in a form that excluded the possibility of comparing the species composition of helminths in different countries of Eastern Europe. A. sidemi, S. asymmetrica, M. dagestanica and N. roscidus have not been reported from red deer in European Russia earlier. Thus, we found these four species of gastrointestinal nematodes in C. elaphus from European Russia for the first time.

Conclusion

The study of the species composition of gastrointestinal nematodes of red deer in three regions of European Russia detected 11 species of nematodes. The levels of the intensity of infection were relatively low. Among the detected species of nematodes, S. asymmetrica and O. leptospicularis showed the highest levels of the prevalence. A comparison with the previous data revealed four new species (A. sidemi, S. asymmetrica, M. dagestanica and N. roscidus) in the fauna of nematodes of red deer in European Russia. The first detection of Asian nematode A. sidemi in red deer in the European part of Russia confirms the further spreading of this alien parasite. The rather high prevalence of S. asymmetrica (60.6%) indicates a potential health risk for red deer. The detection of M. dagestanica in red deer indicates a tendency for the spread of this nematode among wild ruminants in Eastern Europe. The lack of previous reports concerning intestinal nematode N. roscidus in red deer may be due to the fact that many studies were limited to the dissection of abomasum, as well as difficulties in morphological differentiation among the species of Nematodirus.

ACKNOWLEDGMENTS. The authors express their gratitude to veterinary pathologist Alexander Khutoryanskyi and technician specialist Anton Aksyonov for their immense help with sampling nematodes from red deer. We are grateful to the reviewer for useful comments that allowed us to significantly improve the manuscript.

References

- Albrechtova M., Kasparova E.S., Langrova I., Hart V., Neuhaus B., Jankovska I., Petrtyl M., Magdalek J. & Spakulova M. 2024. A revision of the trichostrongylid nematode *Cooperia* Ransom, 1907, from deer game: recent integrative research confirms the existence of the ancient host-specific species *Cooperia ventricosa* (Rudolphi, 1809) // Frontiers in Veterinary Science. Vol.11. P.1–12.
- Asadov S.M. 1960. [Helminth fauna of ruminants in USSR and its ecological-geographical analysis]. Baku: Izdatel'stvo akademii nauk Azerbaydzhanskoy SSR. 512 p. [in Russian].
- Ashrafi K., Sharifdini M., Heidari Z., Rahmati B. & Kia E. 2020. Zoonotic transmission of *Teladorsagia circum-cincta* and *Trichostrongylus* species in Guilan province, northern Iran: molecular and morphological characterizations // BMC Infectious Diseases. Vol.20. No.28. P.1–9.
- Bernard J., Biesemans W. & Mathy P. 1988. [Gastrointestinal parasitic nematodes of wild ungulates in Belgian Ardennes] // Schweizer Archiv für Tierheilkunde. Vol.130. P.77–103 [in French, with English summary].
- Bhat A.H., Tak H., Malik I.M., Ganai B.A. & Zehbi N. 2023. Trichostrongylosis: a zoonotic disease of small ruminants // Journal of Helminthology. Vol.97. P.1–11.
- Brown L.D., Cai T.T. & Dasgupta A. 2001. Interval Estimation for a Binomial Proportion // Statistical Science. Vol.16. No.2. P.101–133. DOI:10.1214/ss/1009213286
- Cisek A., Balicka-Ramisz A., Ramisz A. & Pilarczyk B. 2003. Occurrence of gastro-intestinal nematodes in cervids (Cervidae) of North-Western Poland // Electronic Journal Polish Agricultural University. Vol.6. No.2.
- Demiaszkiewicz A., Lachowicz J. & Osinska B. 2009. Ashworthius sidemi (Nematoda, Trichostrongylidae) in wild ruminants in Bialowieza Forest // Polish Journal of Veterinary Sciences. Vol.12. No.3. P.385–388.
- Drozdz J. 1995. Polymorphism in the Ostertagiinae Lopez-Neyra, 1947 and comments on the systematics of these nematodes // Systematic Parasitology. Vol.32. P.91–99.
- Drozdz J., Demiaszkiewicz A. & Lachowicz J. 2002. Exchange of gastrointestinal nematodes between roe and red deer (Cervidae) and European bison (Bovidae) in the Bieszczady Mountains (Carpathians, Poland) // Acta Parasitologica. Vol.47. No.4. P.314–317.
- Ferte H., Cleva D., Depaquit J., Gobert S. & Leger N. 2000. Status and origin of Haemonchinae (Nematoda: Trichostrongylidae) in deer: a survey conducted in France from 1985 to 1998 // Parasitology Research. Vol.86. No.7. P.582–587.
- Filip-Hutsch K., Czopowicz M., Barc A. & Demiaszkiewicz A.W. 2021. Gastrointestinal helminthes of European moose population in Poland // Pathogens. Vol.10. No.4. P.456.
- Govorka I., Maklakova L.P., Mitukh I., Pelgunov A.N., Rykovskii A.S., Semenova M.K., Sonin M.D., Erkhardova-Kotrla B. & Iurashek V. 1988. [Helminths of wild ungulates of Eastern Europe]. Moscow: Nauka. 208 p. [in Russian].
- Grandi G., Ühlhorn H., Agren E., Morner T., Righi F., Osterman-Lind E. & Neimanis A. 2018. Gastrointestinal parasitic infections in dead or debilitated moose (*Alces alces*) in Sweden // Journal of Wildlife Diseases. Vol.54. No.1. P.165–169.
- Halvarsson P., Baltrusis P., Kjellander P. & Hoglund J. 2022. Parasitic strongyle nemabiome communities in wild ruminants in Sweden // Parasites & Vectors. Vol.15. No.1. P.1–15.

- Hoberg E.P. & Khrustalev A.V. 1996. Re-evaluation of Mazamastrongylus dagestanica (Trichostrongylidae) with descriptions of the synlophe, genital cone, and other structural characters // Journal of Parasitology. Vol.82. No.5. P.778–787.
- Hora F.S., Genchi C., Ferrari N., Morariu S., Mederle N. & Dărăbus G. 2017. Frequency of gastrointestinal and pulmonary helminth infections in wild deer from western Romania // Veterinary Parasitology: Regional Studies and Reports. Vol. 8. P. 75–77.
- Irvine R.J., Corbishley H., Pilkington J.G. & Albon S.D. 2006. Low-level parasitic worm burdens may reduce body condition in free-ranging red deer (*Cervus elaphus*) // Parasitology. Vol.133. No.4. P.465–475.
- Ivashkin V.M., Kontrimavichus V.I. & Nazarova N.S. 1971. [Methods of terrestrial mammals' helminths collection and study]. Moscow: Nauka. 124 p. [in Russian].
- Klevezal G.A. 2007. [Principles and methods of age determination of mammals]. Moscow: KMK Scientific Press. 283 p. [in Russian, with English summary].
- Kowal J., Kornas S., Nosal P., Wajdzik M., Basiaga M. & Lesiak M. 2014. Parasite infections in red deer *Cervus elaphus* from Krakow area, southern Poland // Annals of Parasitology. Vol.61. No.1. P.49–52.
- Kutzer E. & Hinaidy H.K. 1969. [Parasites of wild ruminants in Austria] // Zeitschrift für Parasitenkunde. Vol.32. No.4. P.354–368 [in German, with English summary].
- Kuznetsova M.V., Surjev V.I., Kolomejtsev S.G., Likhatskij Y.P., Sipko T.P. & Kholodova M.V. 2013. [Genetic status of red deer (*Cervus elaphus*) inhabiting Rostov region and some other regions of Europe part of Russia: results of a mitochondrial DNA investigation] // Vestnik Okhotovedeniya. Vol.10. No.1. P.53–65 [in Russian, with English summary].
- Kuznetsov D.N., Seryodkin I.V., Maksimova D.A. & Khrustalev A.V. 2014. Helminth fauna of the Siberian roe (*Ca*preolus pygargus) digestive tract // Achievements in the Life Sciences. Vol.8. No.2. P.121–122.
- Kuznetsov D.N. 2020. [Methodical recommendations for sampling and preserving of gastrointestinal nematodes of ruminants] // Russian Journal of Parasitology. Vol.14. No.2. P.120–124 [in Russian, with English summary].
- Kuznetsov D.N., Romashova N.B. & Romashov B.V. 2020. Gastrointestinal nematodes of European roe deer (*Capreolus capreolus*) in Russia // Russian Journal of Theriology. Vol.19. No.1. P.85–93.
- Kuznetsov D.N., Romashova N.B. & Romashov B.V. 2022. Species composition of gastrointestinal nematodes of moose (*Alces alces*) in European Russia // Russian Journal of Theriology. Vol.21. No.2. P.162–168.
- Kuznetsov D.N. 2024. Gastrointestinal nematodes of common fallow deer (*Dama dama*) in game farms in European Russia // Russian Journal of Theriology. Vol.23. No.2. P.178–186.
- Lehrter V., Jouet D., Lienard E., Decors A. & Patrelle C. 2016. *Ashworthius sidemi* Schulz, 1933 and *Haemonchus contortus* (Rudolphi, 1803) in cervids in France: integrative approach for species identification // Infection, Genetics and Evolution. Vol.46. P.94–101.
- Likhatsky Y.P, Kolomejtsev S.G, Likhatsky E.Y, Kulikov V.V. 2012. [The status of resources of European red deer and the effects of biotechnical measures on the population growth] // Kolomejtsev S.G. & Likhatsky Y.P. (eds.). Materials of the Rostov State Experimental Game Facility. Rostov-on-Don. No.1. P.120–153 [in Russian].
- Lovari S., Lorenzini R., Masseti M., Pereladova O., Carden R.F., Brook S.M. & Mattioli S. 2018. *Cervus elap-*

- hus. The IUCN Red List of Threatened Species 2018: e.T55997072A142404453.
- Magdalek J., Makovicky P. & Vadlejch J. 2021. Nematodeinduced pathological lesions and alterations of mucin pattern identified in abomasa of wild ruminants // International Journal for Parasitology: Parasites and Wildlife. Vol.14. P.62–67.
- Makowski D., Ben-Shachar M. & Lüdecke D. 2019. bayestestR: Describing Effects and their Uncertainty, Existence and Significance within the Bayesian Framework // Journal of Open Source Software. Vol.4. P.e1541.
- Maklakova L.P. & Rykovsky A.S. 2008. [Parasites of Palearctic elk] // Trudy Tsentra Parazitologii. Vol.45. P.100–115 [in Russian, with English summary].
- Mason P. 1994. Parasites of deer in New Zealand // New Zealand Journal of Zoology. Vol.21. No.1. P.39–47.
- Mizani A., Gill P., Daryani A., Sarvi S., Amouei A., Katrimi A.B., Soleymani E., Mirshafiee S., Gholami S., Hosseini S.A., Gholami S., Rahimi M.T., Hashemi-Soteh M.B. & Sharif M. 2017. A multiplex restriction enzyme-PCR for unequivocal identification and differentiation of *Trichostrongylus* species in human samples // Acta Tropica. Vol.173. P.180–184.
- Movsesyan S.O., Nikoghosian M.A., Petrosian R.A., Voronin M.V. & Kuznetsov D.N. 2019. Species diversity of nematodes in domestic and wild ruminants of Armenia // Annals of Parasitology. Vol.65. No.2. P.113–120.
- Pryadko E.I. 1976. [Helminths of Deer]. Alma-Ata: Izdatel'stvo "Nauka" Kazakhskoy SSR. 224 p. [in Russian].
- Pyziel-Serafin A., Vetter W., Klich D. & Anusz K. 2023. Exchanged communities of abomasal nematodes in Cervids with a first report on *Mazamastrongylus dagestanica* in red deer // Journal of Veterinary Research. Vol.67. No.1. P 87–92
- R Core Team. 2025. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
- Rickard L.G., Hoberg E.P., Allen N.M., Zimmerman G.L. & Craig T.M. 1993. Spiculopteragia spiculoptera and S. asymmetrica (Nematoda: Trichostrongyloidea) from red deer (Cervus elaphus) in Texas // Journal of Wildlife Diseases. Vol.29. No.3. P.512–515.
- Santin-Duran M., Alunda J.M., Hoberg E.P. & Fuente C. 2004. Abomasal parasites in wild sympatric cervids, red deer, *Cervus elaphus* and fallow deer, *Dama dama*, from

- three localities across central and western Spain: relationship to host density and park management // Journal of Parasitology. Vol.90. No.6. P.1378–1386.
- Shimalov V.V. & Shimalov V.T. 2003. Helminth fauna of cervids in Belorussian Polesie // Parasitology Research. Vol.89. P.75–76.
- Signorell A. 2025. DescTools: Tools for Descriptive Statistics. DOI: 10.32614/CRAN.package.DescTools
- Skrjabin K.I., Shikhobalova N.P. & Shults R.S. 1954. [Essentials of Nematodology. Vol.3. Trichostrongylids of Animals and Man]. Moscow: Izdatel'stvo Akademii nauk SSSR. 683 p. [in Russian].
- Suarez V.H., Busetti M.R., Fort M.C. & Bedotti D.O. 1991. Spiculopteragia spiculoptera and Ostertagia leptospicularis from Cervus elaphus in La Pampa, Argentina // Veterinary Parasitology. Vol.40. No.1–2. P.165–168.
- van Beest F.M., Petersen H.H., Krogh A.K.H., Frederiksen M.L., Schmidt N.M. & Hansson S.V. 2023. Estimating parasite-condition relationships and potential health effects for fallow deer (*Dama dama*) and red deer (*Cervus elaphus*) in Denmark // International Journal for Parasitology: Parasites and Wildlife. Vol.21. P.143–152.
- Wyrobisz-Papiewska A., Kowal J., Nosal P., Chovancová G. & Rehbein S. 2018. Host specificity and species diversity of the Ostertagiinae Lopez-Neyra, 1947 in ruminants: a European perspective // Parasites & Vectors. Vol.11. No.369. P.1–10.
- Yevstafieva V.A., Yuskiv I.D., Melnychuk V.V., Yasnolob I.O., Kovalenko V.A. & Horb K.O. 2018. Nematodes of the genus *Trichuris* (Nematoda, Trichuridae), parasitizing sheep in Central and South-Eastern regions of Ukraine // Vestnik Zoologii. Vol.52. No.3. P.193–204.
- Youssefi M.R., Hoseini S.H., Mobedi I., Hosseini S.M. & Behrang E. 2014. *Spiculopteragia asymmetrica* infection in *Cervus elaphus* from Iran // Veterinary Research Forum. Vol.5. No.1. P.77–79.
- Zaffaroni E., Manfredi M.T., Citterio C., Sala M., Piccolo G. & Lanfranchi P. 2000. Host specificity of abomasal nematodes in free ranging alpine ruminants // Veterinary Parasitology. Vol.90. P.221–230.
- Zvegintsova N., Kharchenko V. & Kuzmina T. 2018. Helminths of exotic even-toed ungulates (Artiodactyla) in the Askania-Nova biosphere reserve, Ukraine // Vestnik Zoologii. Vol.52. No.6. P.471–494.

mean(vec)

bci(x = vec, ci = 0.9)

Appendix. R code of our calculations.

```
## Nematodirus roscidus
## R version 4.5.0 (2025-04-11)
                                                                 vec \le c(1, 9, 25)
library(DescTools) ## package version 0.99.59
                                                                 mean(vec)
library(bayestestR) ## package version 0.16.0
                                                                 bci(x = vec, ci = 0.9)
## general prevalence
                                                                 ## Mazamastrongylus dagestanica
BinomCI(x = 26, n = 33, conf.level = 0.9, method = "jef-
                                                                 vec <- c(4, 1)
freys", rand = 2025)
## Cooperia pectinata prevalence
                                                                 mean(vec)
                                                                 bci(x = vec, ci = 0.9)
Binom\widehat{C}I(x = 6, n = 33, \text{conf.level} = 0.9, \text{method} = "jeffreys",
                                                                 ## Trichostrongylus colubriformis
rand = 2025)
                                                                 vec <- c(1, 2)
## Spiculopteragia spiculoptera, Nematodirus roscidus preva-
                                                                 mean(vec)
lence
                                                                 bci(x = vec, ci = 0.9)
BinomCI(x = 3, n = 33, conf.level = 0.9, method = "jeffreys",
                                                                 ## Trichostrongylus axei
rand = 2025
                                                                 \text{vec} \leq c(1)
## Mazamastrongylus dagestanica, Trichostrongylus colubri-
                                                                 mean(vec)
formis prevalence
                                                                 bci(x = vec, ci = 0.9)
BinomCI(x = 2, n = 33, conf.level = 0.9, method = "jeffreys",
                                                                 ## Aonchoteca bovis
rand = 2025)
                                                                 vec <- c(161)
## Trichostrongylus axei, Aonchoteca bovis prevalence
                                                                 mean(vec)
BinomCI(x = 1, n = 33, conf.level = 0.9, method = "jeffreys",
                                                                 bci(x = vec, ci = 0.9)
                                                                 ## Trichuris ovis
## Trichuris ovis, Ashworthius sidemi prevalence
                                                                 vec <- c(1, 1, 2, 2)
BinomCI(x = 4, n = 33, conf.level = 0.9, method = "jeffreys",
                                                                 mean(vec)
rand = 2025)
                                                                 bci(x = vec, ci = 0.9)
## Ostertagia leptospicularis prevalence
                                                                 ## Ashworthius sidemi
BinomCI(x = 11, n = 33, conf.level = 0.9, method = "jeffreys",
                                                                 vec <- c(6, 182, 23, 44)
rand = 2025)
                                                                 mean(vec)
## Spiculopteragia asymmetrica prevalence
                                                                 bci(x = vec, ci = 0.9)
BinomCI(x = 20, n = 33, conf.level = 0.9, method = "jef-
freys", rand = 2025)
                                                                 ## Ostertagia leptospicularis/kolchida
                                                                 vec <- c(98, 12, 33, 21, 13, 32, 35, 12, 5, 1, 1)
                                                                 mean(vec)
## Mean intensity of male nematodes and BCAI
                                                                 bci(x = vec, ci = 0.9)
## Cooperia pectinata
                                                                 ## Spiculopteragia asymmetrica/quadrispiculata
\text{vec} \le c(1, 18, 2, 4, 8, 1)
                                                                 vec <- c(1, 42, 16, 4, 16, 16, 65, 46, 36, 56, 34, 26, 138, 4, 19,
mean(vec)
                                                                 80, 59, 4, 16, 4)
bci(x = vec, ci = 0.9)
## Spiculopteragia spiculoptera
                                                                 mean(vec)
                                                                 bci(x = vec, ci = 0.9)
vec <- c(4, 2, 3)
```